A tight Cramer-Rao bound for joint parameter estimation with a pure two-mode squeezed probe

被引:23
作者
Bradshaw, Mark [1 ]
Assad, Syed M. [1 ]
Lam, Ping Koy [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Quantum Sci, Ctr Quantum Computat & Commun Technol, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会;
关键词
Quantum physics; Quantum information; Quantum optics; Parameter estimation; Cramer-Rao bound; QUANTUM ESTIMATION;
D O I
10.1016/j.physleta.2017.06.024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate the Holevo Cramer-Rao bound for estimation of the displacement experienced by one mode of an two-mode squeezed vacuum state with squeezing r and find that it is equal to 4 exp(-2r). This equals the sum of the mean squared error obtained from a dual homodyne measurement, indicating that the bound is tight and that the dual homodyne measurement is optimal. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2598 / 2607
页数:10
相关论文
共 15 条
[1]   Nonlocal defect solitons in parity-time-symmetric superlattices with defocusing nonlinearity [J].
Fang, Limin ;
Gao, Jie ;
Shi, Zhiwei ;
Zhu, Xing ;
Li, Huagang .
EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (10)
[2]   An estimation theoretical characterization of coherent states [J].
Fujiwara, A ;
Nagaoka, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (09) :4227-4239
[3]  
Fujiwara A., 1994, MATH ENG TECH REP, V94, P94
[4]  
Fujiwara A., 1994, MATH ENG TECH REP, V94
[5]   Optimal estimation of joint parameters in phase space [J].
Genoni, M. G. ;
Paris, M. G. A. ;
Adesso, G. ;
Nha, H. ;
Knight, P. L. ;
Kim, M. S. .
PHYSICAL REVIEW A, 2013, 87 (01)
[6]  
Hayashi Masahito, 2006, ARXIVQUANTPH0411073
[7]  
Helstrom C. W., 1969, Journal of Statistical Physics, V1, P231, DOI 10.1007/BF01007479
[8]   MINIMUM MEAN-SQUARED ERROR OF ESTIMATES IN QUANTUM STATISTICS [J].
HELSTROM, CW .
PHYSICS LETTERS A, 1967, A 25 (02) :101-&
[9]  
Holevo A. S., 1976, Proceedings of the 3rd Japan-USSR Symposium on Probability Theory, P194
[10]  
Holevo A. S., 2011, PROBABILISTIC STAT A, V1