Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge

被引:74
作者
Chen, Guoxing [1 ,2 ]
Godfroid, Thomas [3 ]
Britun, Nikolay [1 ]
Georgieva, Violeta [2 ]
Delplancke-Ogletree, Marie-Paule [2 ]
Snyders, Rony [1 ,3 ]
机构
[1] Univ Mons, ChIPS, 23 Pl Parc, B-7000 Mons, Belgium
[2] Univ Libre Bruxelles, 4MAT, 50 Av FD Roosevelt, B-1050 Brussels, Belgium
[3] Mat Nova Res Ctr, Av N Copernic 1, B-7000 Mons, Belgium
关键词
CO2; conversion; Plasma-catalysis; CO2/H2O mixture; Microwave discharge; Synergistic effect; Oxygen vacancy; DIELECTRIC BARRIER DISCHARGE; NONTHERMAL PLASMA; CARBON-DIOXIDE; OPTICAL-PROPERTIES; OXIDE SURFACES; OXYGEN-ATOMS; TIO2; REDUCTION; DECOMPOSITION; TEMPERATURE;
D O I
10.1016/j.apcatb.2017.05.032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The conversion of CO2 and CO2/H2O mixtures on a TiO2 supported NiO catalyst in a pulsed surface-wave sustained microwave discharge has been investigated. The influence of the catalyst preparation method (conventional calcination (in air or Ar) vs. Ar plasma-assisted decomposition) on the CO2 conversion and its energy efficiency has been studied. The results demonstrate that the Ar plasma-treated catalyst is more active compared to the conventional calcined one. The plasma-treated catalyst increases the CO2 conversion and its energy efficiency almost by a factor of two, compared to the plasma only assisted CO2 dissociation, while the conventional calcined catalysts affect the CO2 conversion rather insignificantly. The conversion of CO2 is found to be about 45% at 70 Ton in pure CO2 with Ar plasma-treated catalyst, having an energy efficiency of 56%. In the case of CO2/H2O mixture, the CO2 conversion efficiency reaches 42% (energy efficiency is 52%) at 60 Torr. The catalyst characterization shows that Ar plasma treatment may result in a higher density of oxygen vacancies and a comparatively uniform distribution of NiO on the TiO2 surface. The dissociative electron attachment of CO2 at the catalyst surface enhanced by the oxygen vacancies and plasma electrons may explain the increase of conversion and energy efficiencies in this case. A mechanism of plasma-catalytic conversion of CO2 at the catalyst surface in CO2/H2O mixture is proposed. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 125
页数:12
相关论文
共 70 条
[1]   Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study [J].
Aerts, Robby ;
Somers, Wesley ;
Bogaerts, Annemie .
CHEMSUSCHEM, 2015, 8 (04) :702-716
[2]  
[Anonymous], 1983, SOV PHYS DOKL
[3]  
Arita K., 2016, BJAST, V15, P1
[4]   Non-thermal plasma technology for the conversion of CO2 [J].
Ashford, Bryony ;
Tu, Xin .
CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2017, 3 :45-49
[5]   Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment [J].
Bharti, Bandna ;
Kumar, Santosh ;
Lee, Heung-No ;
Kumar, Rajesh .
SCIENTIFIC REPORTS, 2016, 6
[6]  
Brook SL, 1998, J CATAL, V180, P225
[7]   Copper as promoter of the NiO-CeO2 catalyst in the preferential CO oxidation [J].
Chagas, Carlos Alberto ;
de Souza, Eugenio F. ;
Manfro, Robinson L. ;
Landi, Sandra M. ;
Souza, Mariana M. V. M. ;
Schmal, Martin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 182 :257-265
[8]   An overview of CO2 conversion in a microwave discharge: the role of plasma-catalysis [J].
Chen, Guoxing ;
Britun, Nikolay ;
Godfroid, Thomas ;
Georgieva, Violeta ;
Snyders, Rony ;
Delplancke-Ogletree, Marie-Paule .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (08)
[9]   Plasma assisted catalytic decomposition of CO2 [J].
Chen, Guoxing ;
Georgieva, Violeta ;
Godfroid, Thomas ;
Snyders, Rony ;
Delplancke-Ogletree, Marie-Paule .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 190 :115-124
[10]   Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge [J].
Chen, Guoxing ;
Silva, Tiago ;
Georgieva, Violeta ;
Godfroid, Thomas ;
Britun, Nikolay ;
Snyders, Rony ;
Delplancke-Ogletree, Marie Paule .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (09) :3789-3796