Superlinear convergence estimates for a conjugate gradient method for the biharmonic equation

被引:4
作者
Chan, RH [1 ]
Delillo, TK
Horn, MA
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong
[2] Wichita State Univ, Dept Math & Stat, Wichita, KS 67260 USA
关键词
biharmonic equation; numerical conformal mapping; Hankel matrices; conjugate gradient method;
D O I
10.1137/S1064827596303570
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The method of Muskhelishvili for solving the biharmonic equation using conformal mapping is investigated. In [R. H. Chan, T. K. DeLillo, and M. A. Horn, SIAM J. Sci. Comput., 18 (1997), pp. 1571-1582] it was shown, using the Hankel structure, that the linear system in [N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, the Netherlands] is the discretization of the identity plus a compact operator, and therefore the conjugate gradient method will converge superlinearly. Estimates are given here of the superlinear convergence in the cases when the boundary curve is analytic or in a Holder class.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 9 条
[1]  
Anselone P. M., 1971, Collectively compact operator approximation theory and applications to integral equations
[3]   The numerical solution of the biharmonic equation by conformal mapping [J].
Chan, RH ;
Delillo, TK ;
Horn, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (06) :1571-1582
[4]  
CONWAY J, 1990, COURSE FUNCTIONAL AN
[5]  
Daniel J. W., 1967, SIAM J NUMER ANAL, V4, P10
[6]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[7]  
Kantorovich L.V., 1958, APPROXIMATE METHODS
[8]  
Muskhelishvili NI., 1975, SOME BASIC PROBLEMS
[9]  
Pommerenke C, 1992, BOUNDARY BEHAV CONFO