Computing abelian varieties over finite fields isogenous to a power

被引:4
作者
Marseglia, Stefano [1 ,2 ]
机构
[1] Stockholm Univ, Matemat Inst, S-10691 Stockholm, Sweden
[2] Univ Utrecht, Math Inst, POB 80010, NL-3508 TA Utrecht, Netherlands
关键词
Abelian varieties; Finite fields; Polarizations; Bass orders; DIRECT SUMS; LATTICES; ORDERS;
D O I
10.1007/s40993-019-0174-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a module-theoretic description of the isomorphism classes of abelian varieties A isogenous to Br, where the characteristic polynomial g of Frobenius of B is an ordinary square-free q-Weil polynomial, for a power q of a prime p, or a square-free p-Weil polynomial with no real roots. Under some extra assumptions on the polynomial g we give an explicit description of all the isomorphism classes which can be computed in terms of fractional ideals of an order in a finite product of number fields. In the ordinary case, we also give a module-theoretic description of the polarizations of A.
引用
收藏
页数:17
相关论文
共 30 条
  • [1] [Anonymous], 1999, KLEIN QUARTIC NUMBER, P51
  • [2] Bass H., 1962, T AM MATH SOC, V162, P319
  • [3] Bass H., 1963, Math. Z, V82, P8
  • [4] Siegel modular forms of degree three and the cohomology of local systems
    Bergstrom, Jonas
    Faber, Carel
    van der Geer, Gerard
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2014, 20 (01): : 83 - 124
  • [5] Borevi Z.I., 1968, P STEKLOV I MATH, V80, p[56, 51]
  • [6] Buchmann J., 1994, J. Theor. Nombres Bordeaux, V6, P221
  • [7] Categories of abelian varieties over finite fields, I: Abelian varieties over Fp
    Centeleghe, Tommaso Giorgio
    Stix, Jakob
    [J]. ALGEBRA & NUMBER THEORY, 2015, 9 (01) : 225 - 265
  • [8] Cohen H., 2000, ADV TOPICS COMPUTATI
  • [9] ORDINARY ABELIAN VARIETIES OVER FINITE FIELDS
    DELIGNE, P
    [J]. INVENTIONES MATHEMATICAE, 1969, 8 (03) : 238 - &
  • [10] Detlev W, 1991, MANUSCRIPTA MATH, V71, P399