Performance Optimization in Heterogeneous WiFi and Cellular Mobile Edge Computing Systems

被引:3
作者
Niu, Liwen [1 ]
Cao, Yangjie [1 ]
Wu, Celimuge [2 ]
Yin, Rui [3 ]
Chen, Xianfu [4 ]
机构
[1] Zhengzhou Univ, Zhengzhou, Peoples R China
[2] Univ Electrocommun, Tokyo, Japan
[3] Zhejiang Univ City Coll, Hangzhou, Peoples R China
[4] VTT Tech Res Ctr Finland, Espoo, Finland
来源
2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2021年
基金
芬兰科学院; 中国国家自然科学基金;
关键词
Computation offloading; heterogeneous wireless networks; Markov decision process; deep reinforcement learning;
D O I
10.1109/GLOBECOM46510.2021.9685275
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile edge computing (MEC) is a promising paradigm for alleviating the computation burden of resource-constrained mobile devices. Nevertheless, the majority of existing efforts concentrate on offloading computations from mobile devices to an edge computing server through the cellular networks only. With the development of wireless connectivity technologies, WiFi networks over unlicensed spectrum provide a "green" (i.e., cost-efficient and economical) alternative for computation offloading. In this paper, we investigate the problem of computation offloading in a heterogeneous WiFi and cellular MEC system, where both the WiFi and the cellular networks are possible for offloading the arriving computation tasks at a mobile user (MU). The objective of an MU is to minimize the long-term cost, which can be described as a single-agent Markov decision process (MDP) by accounting for the inherent system dynamics in the MU mobility, sporadic computation task arrivals and wireless connectivity variations. To solve the optimal strategy for the formulated MDP with a high-dimensional state space but without the statistical knowledge of system dynamics, we resort to a model-free deep reinforcement learning algorithm. Numerical experiments verify that the proposed algorithm is able to significantly reduce the average computation offloading cost compared with other baselines.
引用
收藏
页数:6
相关论文
共 21 条
[11]   Edge QoE: Computation Offloading With Deep Reinforcement Learning for Internet of Things [J].
Lu, Haodong ;
He, Xiaoming ;
Du, Miao ;
Ruan, Xiukai ;
Sun, Yanfei ;
Wang, Kun .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) :9255-9265
[12]   Mobile Edge Computing: A Survey on Architecture and Computation Offloading [J].
Mach, Pavel ;
Becvar, Zdenek .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (03) :1628-1656
[13]  
Mao YJ, 2017, INT GEOL REV, V59, P1276, DOI [10.1109/COMST.2017.2745201, 10.1080/00206814.2016.1209435]
[14]   Performance Modeling, Analysis, and Optimization of Delayed Mobile Data Offloading for Mobile Users [J].
Mehmeti, Fidan ;
Spyropoulos, Thrasyvoulos .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2017, 25 (01) :550-564
[15]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533
[16]   A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications [J].
Wang, Shuo ;
Zhang, Xing ;
Zhang, Yan ;
Wang, Lin ;
Yang, Juwo ;
Wang, Wenbo .
IEEE ACCESS, 2017, 5 :6757-6779
[17]   CampEdge: Distributed Computation Offloading Strategy Under Large-Scale AP-Based Edge Computing System for IoT Applications [J].
Wang, Zhong ;
Xue, Guangtao ;
Qian, Shiyou ;
Li, Minglu .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (08) :6733-6745
[18]  
Xu CH, 2017, IEEE CLOUD COMPUT, V4, P50
[19]   LBT-Based Adaptive Channel Access for LTE-U Systems [J].
Yin, Rui ;
Yu, Guanding ;
Maaref, Amine ;
Li, Geoffrey Ye .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (10) :6585-6597
[20]  
Zhang X., 2018, P CISS PRINC NJ MAR