Nonlinear Stability of a SIRS Epidemic Model with Convex Incidence Rate

被引:0
作者
Buonomo, B. [1 ]
Rionero, S. [1 ]
机构
[1] Univ Naples Federico II, Dept Math & Applicat, I-80126 Naples, Italy
来源
NEW TRENDS IN FLUID AND SOLID MODELS | 2010年
关键词
epidemic model; direct Lyapunov method; Lyapunov function; convex incidence rate; L-2-STABILITY;
D O I
10.1142/9789814293228_0003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an epidemic model for infections with non permanent acquired immunity (SIRS). The incidence rate is assumed to be convex respect to the infective class. By using a peculiar Lyapunov function, we obtain necessary and sufficient conditions for the local nonlinear stability of equilibria. Conditions ensuring the global stability of the endemic equilibrium are also obtained. Our procedure allows to enlarge the class of incidence rates ensuring the Lyapunov nonlinear stability of the endemic equilibrium for SIRS models.
引用
收藏
页码:19 / 25
页数:7
相关论文
共 15 条
[1]  
ANDERSON R M, 1991
[2]  
BUONOMO B, LYAPUNOV ST IN PRESS
[3]  
Busenberg S. N, 1993, VERTICALLY TRASMITTE
[4]  
Capasso V., 1993, MATH STRUCTURES EPID, V97
[5]   The mathematics of infectious diseases [J].
Hethcote, HW .
SIAM REVIEW, 2000, 42 (04) :599-653
[6]   An SIRS model with a nonlinear incidence rate [J].
Jin, Yu ;
Wang, Wendi ;
Xiao, Shiwu .
CHAOS SOLITONS & FRACTALS, 2007, 34 (05) :1482-1497
[7]   Global properties of infectious disease models with nonlinear incidence [J].
Korobeinikov, Andrei .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (06) :1871-1886
[9]  
LaSalle J., 1961, STABILITY LYAPUNOVS