VARIATIONAL SOLUTIONS OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH CYLINDRICAL LEVY NOISE

被引:5
作者
Kosmala, Tomasz [1 ]
Riedle, Markus [2 ,3 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
[3] Tech Univ Dresden, Inst Math Stochast, Fac Math, D-01062 Dresden, Germany
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2021年 / 26卷 / 06期
关键词
cylindrical Levy processes; stochastic partial differential equations; multiplicative noise; variational solutions; stochastic integration; TIME REGULARITY;
D O I
10.3934/dcdsb.2020209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the existence of a unique solution in the variational approach of the stochastic evolution equation dX(t) = F (X(t)) dt + G(X(t)) dL(t) driven by a cylindrical Levy process L is established. The coefficients F and G are assumed to satisfy the usual monotonicity and coercivity conditions. The noise is modelled by a cylindrical Levy processes which is assumed to belong to a certain subclass of cylindrical Levy processes and may not have finite moments.
引用
收藏
页码:2879 / 2898
页数:20
相关论文
共 30 条
[1]  
[Anonymous], 1979, Current problems in mathematics
[2]  
[Anonymous], 1982, Semimartingales, a Course on Stochastic Processes
[3]  
Applebaum D, 2009, CAM ST AD M, V93, P1
[4]   Cylindrical Levy processes in Banach spaces [J].
Applebaum, David ;
Riedle, Markus .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 101 :697-726
[5]  
Bingham N., 1989, Regular Variation
[6]   Regularity of Ornstein-Uhlenbeck Processes Driven by a L,vy White Noise [J].
Brzezniak, Zdzisaw ;
Zabczyk, Jerzy .
POTENTIAL ANALYSIS, 2010, 32 (02) :153-188
[7]   Strong solutions for SPDE with locally monotone coefficients driven by Levy noise [J].
Brzezniak, Zdzislaw ;
Liu, Wei ;
Zhu, Jiahui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 :283-310
[8]   Time irregularity of generalized Ornstein-Uhlenbeck processes [J].
Brzezniak, Zdzislaw ;
Goldys, Ben ;
Imkeller, Peter ;
Peszat, Szymon ;
Priola, Enrico ;
Zabczyk, Jerzy .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) :273-276
[9]   COMPARING THE TAIL OF AN INFINITELY DIVISIBLE DISTRIBUTION WITH INTEGRALS OF ITS LEVY MEASURE [J].
EMBRECHTS, P ;
GOLDIE, CM .
ANNALS OF PROBABILITY, 1981, 9 (03) :468-481
[10]  
Feller W., 1971, INTRO PROBABILITY TH, VII, DOI DOI 10.2307/2282584