Nanoscale vacuum channel transistor with in-plane collection structure

被引:25
作者
Xu, Ji [1 ]
Hu, Hai [2 ]
Yang, Wenxin [1 ]
Li, Chi [2 ]
Shi, Yutong [1 ]
Shi, Yongjiao [1 ]
Wang, Qilong [1 ]
Zhang, Xiaobing [1 ]
机构
[1] Southeast Univ, Joint Int Res Lab Informat Display & Visualizat, Nanjing 210096, Jiangsu, Peoples R China
[2] Natl Ctr Nanosci & Technol, Div Nanophoton, CAS Ctr Excellence Nanosci, Beijing 100190, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
nanoscale vacuum channel; vacuum transistor; in-plane collection structure; fast temporal response; FIELD-EMISSION; CARBON NANOTUBES; VOLTAGE; FILMS;
D O I
10.1088/1361-6528/ab51cb
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High quality nanoscale vacuum channel transistors (NVCTs) enable carriers to transport ballistically through the vacuum nanogap, achieving high speed and frequency characteristic which are essential for on-chip vacuum electronic devices. However, the studies to date have been largely confined to explore the common electrical performance, while the fast response characteristic of NVCTs remains a challenge. We report the fabrication of metal-based NVCT, with sub-100 nm vacuum channel and specific designed in-plane collection structure which can enhance the emission or collection efficiency of the electrons simultaneously. Importantly, the demonstration of a rise/fall time of less than 100 ns is achieved, which is compatible with those high-quality solid-state transistors based on low-dimensional materials. Moreover, the device can also retain excellent electrical performance, exhibiting a high drive current (>10 ?A), low work voltage (<10 V) and high on/off current ratio (>10(4)). The verification of fast temporal response of NVCT makes a significant step towards on-chip vacuum electronics with high speed and integration.
引用
收藏
页数:8
相关论文
共 44 条
[1]   A history of the invention of the transistor and where it will lead us [J].
Brinkman, WF ;
Haggan, DE ;
Troutman, WW .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1997, 32 (12) :1858-1865
[2]   Graphene field emitters: A review of fabrication, characterization and properties [J].
Chen, Leifeng ;
Yu, Hu ;
Zhong, Jiasong ;
Song, Lihui ;
Wu, Jun ;
Su, Weitao .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2017, 220 :44-58
[3]   Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics [J].
Cheng, Rui ;
Jiang, Shan ;
Chen, Yu ;
Liu, Yuan ;
Weiss, Nathan ;
Cheng, Hung-Chieh ;
Wu, Hao ;
Huang, Yu ;
Duan, Xiangfeng .
NATURE COMMUNICATIONS, 2014, 5
[4]   The consequences of dependence between the formal area efficiency and the macroscopic electric field on linearity behavior in Fowler-Nordheim plots [J].
de Assis, Thiago A. ;
Dall'Agnol, Fernando F. ;
Andrade, Roberto F. S. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (35)
[5]   Leakage and field emission in side-gate graphene field effect transistors [J].
Di Bartolomeo, A. ;
Giubileo, F. ;
Iemmo, L. ;
Romeo, F. ;
Russo, S. ;
Unal, S. ;
Passacantando, M. ;
Grossi, V. ;
Cucolo, A. M. .
APPLIED PHYSICS LETTERS, 2016, 109 (02)
[6]   Current and Future Challenges in Radiation Effects on CMOS Electronics [J].
Dodd, P. E. ;
Shaneyfelt, M. R. ;
Schwank, J. R. ;
Felix, J. A. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (04) :1747-1763
[7]   FOWLER-NORDHEIM EMISSION FROM NONPLANAR SURFACES [J].
ELLIS, RK .
ELECTRON DEVICE LETTERS, 1982, 3 (11) :330-332
[8]   Development of a 100-W 200-GHz High Bandwidth mm-Wave Amplifier [J].
Field, Mark ;
Kimura, Takuji ;
Atkinson, John ;
Gamzina, Diana ;
Luhmann, Neville C., Jr. ;
Stockwell, Brad ;
Grant, Thomas J. ;
Griffith, Zachary ;
Borwick, Robert ;
Hillman, Christopher ;
Brar, Berinder ;
Reed, Thomas ;
Rodwell, Mark ;
Shin, Young-Min ;
Barnett, Larry R. ;
Baig, Anisullah ;
Popovic, Branko ;
Domier, Calvin ;
Barchfield, Robert ;
Zhao, Jinfeng ;
Higgins, John Aiden ;
Goren, Yehuda .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (06) :2122-2128
[9]   Historical development and future trends of vacuum electronics [J].
Gaertner, Georg .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2012, 30 (06)
[10]   Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays [J].
Garguilo, JM ;
Koeck, FAM ;
Nemanich, RJ ;
Xiao, XC ;
Carlisle, JA ;
Auciello, O .
PHYSICAL REVIEW B, 2005, 72 (16)