Concurrent recovery of mechanical and electrical properties in nanomodified capsule-based self-healing epoxies

被引:21
作者
Kosarli, Maria [1 ]
Foteinidis, Georgios [1 ]
Tsirka, Kyriaki [1 ]
Bekas, Dimitrios G. [1 ]
Paipetis, Alkiviadis S. [1 ]
机构
[1] Univ Ioannina, Dept Mat Sci & Engn, Ioannina 45110, Greece
关键词
Self-healing materials; Microcapsules; Concurrent recovery of electro-mechanical properties; Online healing process monitoring; UREA-FORMALDEHYDE MICROCAPSULES; MULTIWALL CARBON NANOTUBES; RAMAN-SPECTROSCOPY; RESIN; TOUGHNESS; POLYMERS; RELEASE; AGENTS;
D O I
10.1016/j.polymer.2021.123843
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We propose a novel self-healing capsule based polymer system for the concurrent recovery of electro-mechanical properties and demonstrate for the first time the successful monitoring of the damage and healing process with a real time monitoring of the change of the electrical resistance. Urea-formaldehyde (UF) microcapsules containing an epoxy resin modified with multi-walled carbon nanotubes (MWCNTs) were prepared via in-situ emulsification polymerization. MWCNTs were beneficial to mechanical performance, which was even enhanced, in contrast to typical systems where the inclusion of the healing agent deteriorates performance. The capsule shell morphology and mean diameter were characterized via Scanning Electron Microscopy (SEM) and optical microscopy, while thermogravimetric analysis confirmed a high thermal stability of about 222 degrees C. Fracture toughness tests and impedance spectroscopy were employed to assess healing. The MWCNT microcapsule enhanced epoxy exhibited an impressive 22% improvement compared to the virgin system followed by a self-healing efficiency of 80% in mechanical and 95% in electrical properties.
引用
收藏
页数:9
相关论文
共 52 条
[1]   Linear and non-linear electrical dependency of carbon nanotube reinforced composites to internal damage [J].
Bekas, D. ;
Grammatikos, S. A. ;
Kouimtzi, C. ;
Paipetis, A. S. .
ADVANCED MATERIALS FOR DEMANDING APPLICATIONS, 2015, 74
[2]   Nano-reinforced polymeric healing agents for vascular self-repairing composites [J].
Bekas, D. G. ;
Baltzis, D. ;
Paipetis, A. S. .
MATERIALS & DESIGN, 2017, 116 :538-544
[3]   Damage monitoring in nanoenhanced composites using impedance spectroscopy [J].
Bekas, D. G. ;
Paipetis, A. S. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2016, 134 :96-105
[4]   On the use of dielectric spectroscopy for the real time assessment of the dispersion of carbon nanotubes in epoxy [J].
Bekas, D. G. ;
Gkikas, G. ;
Maistros, G. M. ;
Paipetis, A. S. .
RSC ADVANCES, 2016, 6 (82) :78838-78845
[5]   Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques [J].
Bekas, D. G. ;
Tsirka, K. ;
Baltzis, D. ;
Paipetis, A. S. .
COMPOSITES PART B-ENGINEERING, 2016, 87 :92-119
[6]   Microcapsules filled with reactive solutions for self-healing materials [J].
Blaiszik, B. J. ;
Caruso, M. M. ;
McIlroy, D. A. ;
Moore, J. S. ;
White, S. R. ;
Sottos, N. R. .
POLYMER, 2009, 50 (04) :990-997
[7]   Autonomic Restoration of Electrical Conductivity [J].
Blaiszik, Benjamin J. ;
Kramer, Sharlotte L. B. ;
Grady, Martha E. ;
McIlroy, David A. ;
Moore, Jeffrey S. ;
Sottos, Nancy R. ;
White, Scott R. .
ADVANCED MATERIALS, 2012, 24 (03) :398-+
[8]   Raman spectroscopic characterization of multiwall carbon nanotubes and of composites [J].
Bokobza, L. ;
Zhang, J. .
EXPRESS POLYMER LETTERS, 2012, 6 (07) :601-608
[9]   Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites [J].
Bokobza, Liliane ;
Bruneel, Jean-Luc ;
Couzi, Michel .
VIBRATIONAL SPECTROSCOPY, 2014, 74 :57-63
[10]   Robust synthesis of epoxy resin-filled microcapsules for application to self-healing materials [J].
Bolimowski, Patryk A. ;
Bond, Ian P. ;
Wass, Duncan F. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 374 (2061)