Prediction of potential disease-associated microRNAs by composite network based inference

被引:9
作者
He, Bin-Sheng [1 ]
Qu, Jia [2 ]
Chen, Min [3 ]
机构
[1] Changsha Med Univ, Affiliated Hosp 1, Changsha 410219, Hunan, Peoples R China
[2] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
[3] Hunan Inst Technol, Coll Comp Sci & Technol, Hengyang 421002, Peoples R China
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
BREAST-CANCER; MIRNA; INHIBITION; EXPRESSION; DATABASE; V2.0;
D O I
10.1038/s41598-018-34180-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MicroRNAs (miRNAs) act a significant role in multiple biological processes and their associations with the development of all kinds of complex diseases are much close. In the research area of biology, medicine, and bioinformatics, prediction of potential miRNA-disease associations (MDAs) on the base of a variety of heterogeneous biological datasets in a short time is an important subject. Therefore, we proposed the model of Composite Network based inference for MiRNA-Disease Association prediction (CNMDA) through applying random walk to a multi-level composite network constructed by heterogeneous dataset of disease, long noncoding RNA (lncRNA) and miRNA. The results showed that CNMDA achieved an AUC of 0.8547 in leave-one-out cross validation and an AUC of 0.8533+/-0.0009 in 5-fold cross validation. In addition, we employed CNMDA to infer novel miRNAs for kidney neoplasms, breast neoplasms and lung neoplasms on the base of HMDD v2.0. Also, we employed the approach for lung neoplasms on the base of HMDD v1.0 and for breast neoplasms that have no known related miRNAs. It was found that CNMDA could be seen as an applicable tool for potential MDAs prediction.
引用
收藏
页数:9
相关论文
共 50 条
[1]  
Abe O, 2005, LANCET, V366, P2087, DOI 10.1016/s0140-6736(05)66544-0
[2]   Using context-specific effect of miRNAs to identify functional associations between miRNAs and gene signatures [J].
Alshalalfa, Mohammed ;
Alhajj, Reda .
BMC BIOINFORMATICS, 2013, 14
[3]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[4]   MicroRNA signatures in human cancers [J].
Calin, George A. ;
Croce, Carlo M. .
NATURE REVIEWS CANCER, 2006, 6 (11) :857-866
[5]   LncRNADisease: a database for long-non-coding RNA-associated diseases [J].
Chen, Geng ;
Wang, Ziyun ;
Wang, Dongqing ;
Qiu, Chengxiang ;
Liu, Mingxi ;
Chen, Xing ;
Zhang, Qipeng ;
Yan, Guiying ;
Cui, Qinghua .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D983-D986
[6]   MicroRNAs and complex diseases: from experimental results to computational models [J].
Chen, Xing ;
Xie, Di ;
Zhao, Qi ;
You, Zhu-Hong .
BRIEFINGS IN BIOINFORMATICS, 2019, 20 (02) :515-539
[7]   Long non-coding RNAs and complex diseases: from experimental results to computational models [J].
Chen, Xing ;
Yan, Chenggang Clarence ;
Zhang, Xu ;
You, Zhu-Hong .
BRIEFINGS IN BIOINFORMATICS, 2017, 18 (04) :558-576
[8]   Predicting miRNA-disease association based on inductive matrix completion [J].
Chen, Xing ;
Wang, Lei ;
Qu, Jia ;
Guan, Na-Na ;
Li, Jian-Qiang .
BIOINFORMATICS, 2018, 34 (24) :4256-4265
[9]   ELLPMDA: Ensemble learning and link prediction for miRNA-disease association prediction [J].
Chen, Xing ;
Zhou, Zhihan ;
Zhao, Yan .
RNA BIOLOGY, 2018, 15 (06) :807-818
[10]   RKNNMDA: Ranking-based KNN for MiRNA-Disease Association prediction [J].
Chen, Xing ;
Wu, Qiao-Feng ;
Yan, Gui-Ying .
RNA BIOLOGY, 2017, 14 (07) :952-962