Dielectric and mechanical properties of nickel silica core-shell reinforced PMMA nanocomposites

被引:9
|
作者
Abulyazied, D. E. [1 ,2 ]
Abomostafa, H. M. [3 ]
机构
[1] Egyptian Petr Res Inst EPRI, Dept Petrochem, Cairo, Egypt
[2] Univ Tabuk, Fac Sci, Dept Phys, Tabuk, Saudi Arabia
[3] Menoufia Univ, Fac Sci, Phys Dept, Menoufia, Egypt
关键词
Core-shell; di-electric properties; mechanical properties; Ni@SiO2; poly (methyl methacrylate); ELECTRICAL-PROPERTIES; OPTICAL-PROPERTIES; AC CONDUCTIVITY; COMPOSITES; POLYMER; NANOPARTICLES; FILMS; PHTHALOCYANINES; RELAXATION; CONSTANT;
D O I
10.1177/00219983211000434
中图分类号
TB33 [复合材料];
学科分类号
摘要
This paper study the dielectric and mechanical properties of poly (methyl methacrylate)-nickel silica core-shell nanocomposite. Ni@SiO2/PMMA nanocomposite films were prepared by incorporating Ni@SiO2 nanoparticles in PMMA matrix using the solution casting method. The morphology of the prepared nanoparticles was examined through a High-resolution transition electron microscope (HRTEM), which revealed the formation of SiO2 shell at Ni magnetic nanoparticles. The dielectric properties of the nanocomposite films were studied as a function of temperature and frequency in the ranges of 30-180 degrees C and 100 Hz - 5 MHz respectively. The incorporation of the nano Ni@SiO2 to PMMA has a positive effect on the dielectric constant epsilon' of the nanocomposites, as well as, epsilon' improved with increasing temperature. The real electric modulus (M') of composites confirms the occurrence of dispersion in all composites at all temperatures. While dielectric loss tangent epsilon" and the loss part of electric modulus spectra (M) exhibit relaxation peaks which characterize possible relaxation of interfacial polarization in the interface between Ni@SiO2 core-shell and PMMA matrix, these peaks have shifted towards higher frequency with temperature. The relaxation and activation energies, E-c and E-a values decreased from 0.49 to 0.40 eV and from 0.87 to 0.70 eV respectively as Ni@SiO2 content increased. The ac conductivity of the nanocomposite films has deeply increased with increasing temperature and Ni@SiO2 content. The longitudinal modulus (L), shear modulus (G), Young's modulus (E), and bulk modulus (B) of films were studied and they increased as the filler increased from 0 to 15 wt.%.
引用
收藏
页码:2841 / 2855
页数:15
相关论文
共 50 条
  • [1] Magnetic Structured Nickel Core-Shell @ Silica/PMMA Nanocomposites from Synthesis to Applications
    Abulyazied, Dalia E.
    Abomostafa, H. M.
    El Komy, G. M.
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2020, 30 (07) : 2335 - 2346
  • [2] Magnetic Structured Nickel Core-Shell @ Silica/PMMA Nanocomposites from Synthesis to Applications
    Dalia E. Abulyazied
    H. M. Abomostafa
    G. M. El komy
    Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30 : 2335 - 2346
  • [3] Low dielectric constant nanoporous silica/PMMA nanocomposites with improved thermal and mechanical properties
    Jiao, Jian
    Wang, Lei
    Lv, Panpan
    Liu, Peng
    Cai, Yu
    MATERIALS LETTERS, 2013, 109 : 158 - 162
  • [4] New semiconducting core-shell nanocomposites
    Al-Hussaini, A. S.
    El-Bana, W. E.
    El-Ghamaz, N. A.
    COMPOSITE INTERFACES, 2020, 27 (04) : 385 - 399
  • [5] Mechanical properties of transparent poly(methyl methacrylate) nanocomposites reinforced with core-shell polyacrylonitrile/poly(methyl methacrylate) nanofibers
    Borhani, Sedigheh
    Zadhoush, Ali
    Fathi, Meysam
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (39)
  • [6] Improved dielectric properties of PVDF nanocomposites with core-shell structured BaTiO3 @polyurethane nanoparticlesInspec keywordsOther keywords
    Zheng, Ming-Sheng
    Zhang, Chong
    Yang, Yu
    Xing, Zhao-Liang
    Chen, Xin
    Zhong, Shao-Long
    Dang, Zhi-Min
    IET NANODIELECTRICS, 2020, 3 (03) : 94 - 98
  • [7] Optical properties of core-shell structured Ag/SiO2 nanocomposites
    Wang, Jun
    White, William B.
    Adair, James H.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2010, 166 (03): : 235 - 238
  • [8] Silica-PMMA core-shell and hollow nanospheres
    Zhang, K
    Zheng, LL
    Zhang, XH
    Chen, X
    Yang, B
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2006, 277 (1-3) : 145 - 150
  • [9] PREPARATION AND PROPERTIES OF CELLULOSE FIBER/SILICA CORE-SHELL MAGNETIC NANOCOMPOSITES
    Wu, Weibing
    Jing, Yi
    Zhou, Xiaofan
    Dai, Hongqi
    16TH INTERNATIONAL SYMPOSIUM ON WOOD, FIBER AND PULPING CHEMISTRY, PROCEEDINGS, VOLS I & II, 2011, : 1277 - 1282
  • [10] Poly(styrene-co-butyl acrylate)/organo-silica core-shell and ethylene vinyl acetate nanocomposites
    Ahmed, Abd El-Shafey I.
    Hussain, Ahmed I.
    El-Masry, Ahmed M.
    Saleh, Ahmed
    POLYMER COMPOSITES, 2017, 38 : E214 - E220