Identifying pulmonary nodules or masses on chest radiography using deep learning: external validation and strategies to improve clinical practice

被引:55
作者
Liang, C-H [1 ,2 ,3 ]
Liu, Y-C [4 ]
Wu, M-T [2 ,3 ,5 ]
Garcia-Castro, F. [6 ,7 ,8 ]
Alberich-Bayarri, A. [6 ,7 ,8 ]
Wu, F-Z [2 ,3 ,5 ]
机构
[1] Natl Yang Ming Univ, Dept Biomed Imaging & Radiol Sci, Taipei, Taiwan
[2] Natl Yang Ming Univ, Fac Med, Sch Med, Taipei, Taiwan
[3] Natl Yang Ming Univ, Inst Clin Med, Taipei, Taiwan
[4] Xiamen Chang Gung Hosp, Dept Diagnost Radiol, Xiamen, Fujian, Peoples R China
[5] Kaohsiung Vet Gen Hosp, Dept Radiol, Kaohsiung, Taiwan
[6] Hosp Univ Politecn La Fe, Radiol Dept, Valencia, Spain
[7] Biomed Imaging Res Grp GIBI230, Valencia, Spain
[8] QUIBIM SL, Valencia, Spain
关键词
CONVOLUTIONAL NEURAL-NETWORKS; CLASSIFICATION; RADIOLOGISTS; WORKLOAD; TRENDS;
D O I
10.1016/j.crad.2019.08.005
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
AIM: To test the diagnostic performance of a deep learning-based system for the detection of clinically significant pulmonary nodules/masses on chest radiographs. MATERIALS AND METHODS: Using a retrospective study of 100 patients (47 with clinically significant pulmonary nodules/masses and 53 control subjects without pulmonary nodules), two radiologists verified clinically significantly pulmonary nodules/masses according to chest computed tomography (CT) findings. A computer-aided diagnosis (CAD) software using a deep-learning approach was used to detect pulmonary nodules/masses to determine the diagnostic performance in four algorithms (heat map, abnormal probability, nodule probability, and mass probability). RESULTS: A total of 100 cases were included in the analysis. Among the four algorithms, mass algorithm could achieve a 76.6% sensitivity (36/47, 11 false negative) and 88.68% specificity (47/ 53, six false-positive) in the detection of pulmonary nodules/masses at the optimal probability score cut-off of 0.2884. Compared to the other three algorithms, mass probability algorithm had best predictive ability for pulmonary nodule/mass detection at the optimal probability score cut-off of 0.2884 (AUC(Mass): 0.916 versus AUC(Heat map). 0.682, p<0.001; AUC(Mass): 0.916 versus AUC(Abnormal) : 0.810, p=0.002; AUC(Mass): 0.916 versus AUC(Nodule): 0.813, p=0.014). CONCLUSION: In conclusion, the deep-learning based computer-aided diagnosis system will likely play a vital role in the early detection and diagnosis of pulmonary nodules/masses on chest radiographs. In future applications, these algorithms could support triage workflow via double reading to improve sensitivity and specificity during the diagnostic process. (C) 2019 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:38 / 45
页数:8
相关论文
共 30 条
[21]   Automated identification of pneumonia in chest radiograph reports in critically ill patients [J].
Liu, Vincent ;
Clark, Mark P. ;
Mendoza, Mark ;
Saket, Ramin ;
Gardner, Marla N. ;
Turk, Benjamin J. ;
Escobar, Gabriel J. .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2013, 13
[22]   Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs [J].
Nam, Ju Gang ;
Park, Sunggyun ;
Hwang, Eui Jin ;
Lee, Jong Hyuk ;
Jin, Kwang-Nam ;
Lim, Kun Young ;
Vu, Thienkai Huy ;
Sohn, Jae Ho ;
Hwang, Sangheum ;
Goo, Jin Mo ;
Park, Chang Min .
RADIOLOGY, 2019, 290 (01) :218-228
[23]   Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs [J].
Novikov, Alexey A. ;
Lenis, Dimitrios ;
Major, David ;
Hladuvka, Jiri ;
Wimmer, Maria ;
Buehler, Katja .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (08) :1865-1876
[24]   Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists [J].
Rajpurkar, Pranav ;
Irvin, Jeremy ;
Ball, Robyn L. ;
Zhu, Kaylie ;
Yang, Brandon ;
Mehta, Hershel ;
Duan, Tony ;
Ding, Daisy ;
Bagul, Aarti ;
Langlotz, Curtis P. ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Blankenberg, Francis G. ;
Seekins, Jayne ;
Amrhein, Timothy J. ;
Mong, David A. ;
Halabi, Safwan S. ;
Zucker, Evan J. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[25]   Detecting and classifying lesions in mammograms with Deep Learning [J].
Ribli, Dezso ;
Horvath, Anna ;
Unger, Zsuzsa ;
Pollner, Peter ;
Csabai, Istvan .
SCIENTIFIC REPORTS, 2018, 8
[26]   Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning [J].
Shin, Hoo-Chang ;
Roth, Holger R. ;
Gao, Mingchen ;
Lu, Le ;
Xu, Ziyue ;
Nogues, Isabella ;
Yao, Jianhua ;
Mollura, Daniel ;
Summers, Ronald M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1285-1298
[27]   ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases [J].
Wang, Xiaosong ;
Peng, Yifan ;
Lu, Le ;
Lu, Zhiyong ;
Bagheri, Mohammadhadi ;
Summers, Ronald M. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :3462-3471
[28]   Semiquantative Visual Assessment of Sub-solid Pulmonary Nodules ≤3 cm in Differentiation of Lung Adenocarcinoma Spectrum [J].
Wu, Fu-Zong ;
Chen, Po-An ;
Wu, Carol C. ;
Kuo, Pei-Lun ;
Tsao, Shu-Ping ;
Chien, Chu-Chun ;
Tang, En-Kuei ;
Wu, Ming-Ting .
SCIENTIFIC REPORTS, 2017, 7
[29]   Assessment of Selection Criteria for Low-Dose Lung Screening CT Among Asian Ethnic Groups in Taiwan: From Mass Screening to Specific Risk-Based Screening for Non-Smoker Lung Cancer [J].
Wu, Fu-Zong ;
Huang, Yi-Luan ;
Wu, Carol C. ;
Tang, En-Kuei ;
Chen, Chi-Shen ;
Mar, Guang-Yuan ;
Yen, Yu ;
Wu, Ming-Ting .
CLINICAL LUNG CANCER, 2016, 17 (05) :E45-E56
[30]   Deep convolutional neural networks for multi-modality isointense infant brain image segmentation [J].
Zhang, Wenlu ;
Li, Rongjian ;
Deng, Houtao ;
Wang, Li ;
Lin, Weili ;
Ji, Shuiwang ;
Shen, Dinggang .
NEUROIMAGE, 2015, 108 :214-224