Regularization in tomographic reconstruction using thresholding estimators

被引:24
|
作者
Kalifa, M [1 ]
Laine, A
Esser, PD
机构
[1] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
[2] Columbia Presbyterian Med Ctr, Dept Radiol, New York, NY 10027 USA
关键词
dyadic wavelet transform; PET; SPECT; tomographic reconstruction; wavelet packets; IMAGE-RECONSTRUCTION; WAVELET SHRINKAGE; RADON-TRANSFORM; LOCALIZATION; ALGORITHMS;
D O I
10.1109/TMI.2003.809691
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In tomographic medical devices such as single photon emission computed tomography or, positron emission tomography cameras, image reconstruction is an unstable inverse problem, due to the presence of additive noise. A new family of regularization methods for reconstruction, based on a thresholding procedure in wavelet and wavelet packet (WP) decompositions, is studied. This approach is based on the fact that the, decompositions provide a near-diagonalization of the inverse Radon transform and of prior information in medical images. A WP decomposition is adaptively chosen for the specific image to be restored. Corresponding algorithms have been developed for both two-dimensional and full three-dimensional reconstruction. These procedures are fast, noniterative, and flexible. Numerical results suggest that they outperform filtered back-projection and iterative procedures such as ordered- subset-expectation-maximization.
引用
收藏
页码:351 / 359
页数:9
相关论文
共 50 条
  • [31] Effective Anatomical Priors for Emission Tomographic Reconstruction
    Tsai, Yu-Jung
    Huang, Hsuan-Ming
    Chou, Cheng-Ying
    Wang, Weichung
    Hsiao, Ing-Tsung
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2015, 35 (01) : 52 - 61
  • [32] REGULARIZATION PARAMETER TRIMMING FOR ITERATIVE IMAGE RECONSTRUCTION
    Liang, Haoyi
    Weller, Daniel S.
    2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2015, : 755 - 759
  • [33] DG TOMO: A new method for tomographic reconstruction
    De Freitas, D.
    Feschet, F.
    Cachin, F.
    Geissler, B.
    Bapt, A.
    Karidioula, I.
    Martin, C.
    Kelly, A.
    Mestas, D.
    Gerard, Y.
    Reveilles, J. P.
    Maublant, J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 569 (02) : 409 - 411
  • [34] Fast projection/backprojection and incremental methods applied to synchrotron light tomographic reconstruction
    de Lima, Camila
    Helou, Elias Salomao
    JOURNAL OF SYNCHROTRON RADIATION, 2018, 25 : 248 - 256
  • [35] Unbiased Risk Estimates for Singular Value Thresholding and Spectral Estimators
    Candes, Emmanuel J.
    Sing-Long, Carlos A.
    Trzasko, Joshua D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (19) : 4643 - 4657
  • [36] Tomographic image reconstruction from projections using generative AI
    Reis, M. V.
    Carramate, L. F. N. D.
    De Francesco, S.
    da Silva, A. M. F.
    IMAGING SCIENCE JOURNAL, 2025,
  • [37] Tomographic reconstruction using free-form deformation models
    Battle, XL
    Bizais, YJ
    Le Rest, C
    Turzo, A
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 356 - 366
  • [38] OBJECT SHAPE RECOGNITION WITH ARTIFICIAL WHISKERS USING TOMOGRAPHIC RECONSTRUCTION
    Tuna, Cagdas
    Solomon, Joseph H.
    Jones, Douglas L.
    Hartmann, Mitra J. Z.
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2537 - 2540
  • [39] Superresolution reconstruction using nonlinear gradient-based regularization
    Xin Zhang
    Edmund Y. Lam
    Multidimensional Systems and Signal Processing, 2009, 20 : 375 - 384
  • [40] Iterative CT Reconstruction Using Shearlet-Based Regularization
    Vandeghinste, Bert
    Goossens, Bart
    Van Holen, Roel
    Vanhove, Christian
    Pizurica, Aleksandra
    Vandenberghe, Stefaan
    Staelens, Steven
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2013, 60 (05) : 3305 - 3317