Phase separation drives heterochromatin domain formation

被引:1281
作者
Strom, Amy R. [1 ,2 ]
Emelyanov, Alexander V. [3 ]
Mir, Mustafa [2 ]
Fyodorov, Dmitry V. [3 ]
Darzacq, Xavier [2 ]
Karpen, Gary H. [1 ,2 ]
机构
[1] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[3] Albert Einstein Coll Med, Dept Cell Biol, New York, NY USA
关键词
LIVE CELLS; PROTEIN; COMPLEXITY; DROSOPHILA; SPECTROSCOPY; SEQUENCES;
D O I
10.1038/nature22989
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Constitutive heterochromatin is an important component of eukaryotic genomes that has essential roles in nuclear architecture, DNA repair and genome stability(1), and silencing of transposon and gene expression(2). Heterochromatin is highly enriched for repetitive sequences, and is defined epigenetically by methylation of histone H3 at lysine 9 and recruitment of its binding partner heterochromatin protein 1 (HP1). A prevalent view of heterochromatic silencing is that these and associated factors lead to chromatin compaction, resulting in steric exclusion of regulatory proteins such as RNA polymerase from the underlying DNA(3). However, compaction alone does not account for the formation of distinct, multi-chromosomal, membrane-less heterochromatin domains within the nucleus, fast diffusion of proteins inside the domain, and other dynamic features of heterochromatin. Here we present data that support an alternative hypothesis: that the formation of heterochromatin domains is mediated by phase separation, a phenomenon that gives rise to diverse non-membrane-bound nuclear, cytoplasmic and extracellular compartments(4). We show that Drosophila HP1a protein undergoes liquid-liquid demixing in vitro, and nucleates into foci that display liquid properties during the first stages of heterochromatin domain formation in early Drosophila embryos. Furthermore, in both Drosophila and mammalian cells, heterochromatin domains exhibit dynamics that are characteristic of liquid phase-separation, including sensitivity to the disruption of weak hydrophobic interactions, and reduced diffusion, increased coordinated movement and inert probe exclusion at the domain boundary. We conclude that heterochromatic domains form via phase separation, and mature into a structure that includes liquid and stable compartments. We propose that emergent biophysical properties associated with phase-separated systems are critical to understanding the unusual behaviours of heterochromatin, and how chromatin domains in general regulate essential nuclear functions.
引用
收藏
页码:241 / +
页数:10
相关论文
共 38 条
[1]   Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin [J].
Bancaud, Aurelien ;
Huet, Sebastien ;
Daigle, Nathalie ;
Mozziconacci, Julien ;
Beaudouin, Joel ;
Ellenberg, Jan .
EMBO JOURNAL, 2009, 28 (24) :3785-3798
[2]   Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes [J].
Brangwynne, Clifford P. ;
Mitchison, Timothy J. ;
Hyman, Anthony A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (11) :4334-4339
[3]   Drosophila PIWI associates with chromatin and interacts directly with HP1a [J].
Brower-Toland, Brent ;
Findley, Seth D. ;
Jiang, Ling ;
Liu, Li ;
Yin, Hang ;
Dus, Monica ;
Zhou, Pei ;
Elgin, Sarah C. R. ;
Lin, Haifan .
GENES & DEVELOPMENT, 2007, 21 (18) :2300-2311
[4]   Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution [J].
Chen, Bi-Chang ;
Legant, Wesley R. ;
Wang, Kai ;
Shao, Lin ;
Milkie, Daniel E. ;
Davidson, Michael W. ;
Janetopoulos, Chris ;
Wu, Xufeng S. ;
Hammer, John A., III ;
Liu, Zhe ;
English, Brian P. ;
Mimori-Kiyosue, Yuko ;
Romero, Daniel P. ;
Ritter, Alex T. ;
Lippincott-Schwartz, Jennifer ;
Fritz-Laylin, Lillian ;
Mullins, R. Dyche ;
Mitchell, Diana M. ;
Bembenek, Joshua N. ;
Reymann, Anne-Cecile ;
Boehme, Ralph ;
Grill, Stephan W. ;
Wang, Jennifer T. ;
Seydoux, Geraldine ;
Tulu, U. Serdar ;
Kiehart, Daniel P. ;
Betzig, Eric .
SCIENCE, 2014, 346 (6208) :439-+
[5]   Double-Strand Breaks in Heterochromatin Move Outside of a Dynamic HP1a Domain to Complete Recombinational Repair [J].
Chiolo, Irene ;
Minoda, Aki ;
Colmenares, Serafin U. ;
Polyzos, Aris ;
Costes, Sylvain V. ;
Karpen, Gary H. .
CELL, 2011, 144 (05) :732-744
[6]   Perturbation of nuclear architecture by long-distance chromosome interactions [J].
Dernburg, AF ;
Broman, KW ;
Fung, JC ;
Marshall, WF ;
Philips, J ;
Agard, DA ;
Sedat, JW .
CELL, 1996, 85 (05) :745-759
[7]   Mapping the number of molecules and brightness in the laser scanning microscope [J].
Digman, Michelle A. ;
Dalal, Rooshin ;
Horwitz, Alan F. ;
Gratton, Enrico .
BIOPHYSICAL JOURNAL, 2008, 94 (06) :2320-2332
[8]   Detecting Protein Complexes in Living Cells from Laser Scanning Confocal Image Sequences by the Cross Correlation Raster Image Spectroscopy Method [J].
Digman, Michelle A. ;
Wiseman, Paul W. ;
Horwitz, Alan R. ;
Gratton, Enrico .
BIOPHYSICAL JOURNAL, 2009, 96 (02) :707-716
[9]   Position-Effect Variegation, Heterochromatin Formation, and Gene Silencing in Drosophila [J].
Elgin, Sarah C. R. ;
Reuter, Gunter .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2013, 5 (08)
[10]   Nucleation by rRNA Dictates the Precision of Nucleolus Assembly [J].
Falahati, Hanieh ;
Pelham-Webb, Bobbie ;
Blythe, Shelby ;
Wieschaus, Eric .
CURRENT BIOLOGY, 2016, 26 (03) :277-285