A Quantization Model Based on a Floating-point Computing-in-Memory Architecture

被引:2
作者
Clien, Xi [1 ]
Guo, An [1 ]
Xu, Xinbing [1 ,2 ]
Si, Xin [1 ]
Yang, Jun [1 ]
机构
[1] Southeast Univ, Sch Elect Sci & Engn, Nanjing, Peoples R China
[2] Univ Chinese Med, Coll Artificial Intelligence & Informat Techn, Nanjing, Peoples R China
来源
2022 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, APCCAS | 2022年
基金
中国国家自然科学基金;
关键词
Quantization; Floating-point; Computing-inmemory; Neural Network;
D O I
10.1109/APCCAS55924.2022.10090283
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Computing-in-memory (CIM) has been proved to perform high energy efficiency and significant acceleration effect for high computational parallelism neural networks. Floating-point numbers and floating-point CIMs (FP-CIM) are required to execute high performance training and high accuracy inference for neural networks. However, none of former works discuss the relationship between circuit design based on the FP-CIM architecture and neural networks. In this paper, we propose a quantization model based on a FP-CIM architecture to figure out this relationship in PYTORCH. According to experimental results we summarize some principles on FP-CIM macro design. Using our quantization model can reduce data storage overhead by more than 70.0%, and control floating-point networks inference accuracy loss within 0.5%, which is 1.7% better than integer networks.
引用
收藏
页码:493 / 496
页数:4
相关论文
共 11 条
[1]  
Fujiwara H., 2022, IEEE INT SOLID STATE, V65, P1, DOI 10.1109/ISSCC42614.2022.9731645
[2]  
Khwa WS, 2018, ISSCC DIG TECH PAP I, P496, DOI 10.1109/ISSCC.2018.8310401
[3]  
Lee JoonHyub., 2021, P S VLSI CIRC KYOT J, P1, DOI [DOI 10.23919/VLSICIRCUITS52068.2021.9492444, DOI 10.23919/EUCAP51087.2021.9411220]
[4]   ECIM: Exponent Computing in Memory for an Energy-Efficient Heterogeneous Floating-Point DNN Training Processor [J].
Lee, Juhyoung ;
Kim, Jihoon ;
Jo, Wooyoung ;
Kim, Sangyeob ;
Kim, Sangjin ;
Yoo, Hoi-Jun .
IEEE MICRO, 2022, 42 (01) :99-107
[5]   A Neural Network Training Processor With 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees [J].
Park, Jeongwoo ;
Lee, Sunwoo ;
Jeon, Dongsuk .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, 57 (03) :965-977
[6]  
Sakai Y, 2020, INT CONF SOFT COMP, P126, DOI [10.1109/ISCMI51676.2020.9311563, 10.1109/iscmi51676.2020.9311563]
[7]   A Local Computing Cell and 6T SRAM-Based Computing-in-Memory Macro With 8-b MAC Operation for Edge AI Chips [J].
Si, Xin ;
Tu, Yung-Ning ;
Huang, Wei-Hsing ;
Su, Jian-Wei ;
Lu, Pei-Jung ;
Wang, Jing-Hong ;
Liu, Ta-Wei ;
Wu, Ssu-Yen ;
Liu, Ruhui ;
Chou, Yen-Chi ;
Chung, Yen-Lin ;
Shih, William ;
Lo, Chung-Chuan ;
Liu, Ren-Shuo ;
Hsieh, Chih-Cheng ;
Tang, Kea-Tiong ;
Lien, Nan-Chun ;
Shih, Wei-Chiang ;
He, Yajuan ;
Li, Qiang ;
Chang, Meng-Fan .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2021, 56 (09) :2817-2831
[8]   A Dual-Split 6T SRAM-Based Computing-in-Memory Unit-Macro With Fully Parallel Product-Sum Operation for Binarized DNN Edge Processors [J].
Si, Xin ;
Khwa, Win-San ;
Chen, Jia-Jing ;
Li, Jia-Fang ;
Sun, Xiaoyu ;
Liu, Rui ;
Yu, Shimeng ;
Yamauchi, Hiroyuki ;
Li, Qiang ;
Chang, Meng-Fan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (11) :4172-4185
[9]   A 7-nm Compute-in-Memory SRAM Macro Supporting Multi-Bit Input, Weight and Output and Achieving 351 TOPS/W and 372.4 GOPS [J].
Sinangil, Mahmut E. ;
Erbagci, Burak ;
Naous, Rawan ;
Akarvardar, Kerem ;
Sun, Dar ;
Khwa, Win-San ;
Liao, Hung-Jen ;
Wang, Yih ;
Chang, Jonathan .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2021, 56 (01) :188-198
[10]  
Tu F., 2022, 2022 IEEE International Solid-State Circuits Conference (ISSCC), V65, P1