Boundary value problems for some fully nonlinear elliptic equations

被引:25
作者
Chen, Szu-yu Sophie [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1007/s00526-006-0072-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Yamabe-type problem on locally conformally flat compact manifolds with boundary. The main technique we used is to derive boundary C-2 estimates directly from boundary C-0 estimates. We will control the third derivatives on the boundary instead of constructing a barrier function. This result is a generalization of the work by Escobar.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 25 条
[1]  
Benedetti R., 1992, LECT HYPERBOLIC GEOM
[2]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[3]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[4]   An a priori estimate for a fully nonlinear equation on four-manifolds [J].
Chang, SYA ;
Gursky, MJ ;
Yang, P .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1) :151-186
[5]   An equation of Monge-Ampere type in conformal geometry, and four-manifolds of positive Ricci curvature [J].
Chang, SYA ;
Gursky, MJ ;
Yang, PC .
ANNALS OF MATHEMATICS, 2002, 155 (03) :709-787
[6]  
CHEN SS, CONFORMAL DEFORMATIO
[7]  
Chen SYS, 2005, INT MATH RES NOTICES, V2005, P3403
[8]  
ESCOBAR JF, 1992, J DIFFER GEOM, V35, P21
[9]  
EVANS LC, 1982, COMMUN PUR APPL MATH, V35, P333
[10]  
GARDING L, 1959, J MATH MECH, V8, P957