Nanofabricated Ultraflexible Electrode Arrays for High-Density Intracortical Recording

被引:117
作者
Wei, Xiaoling [1 ]
Luan, Lan [1 ,2 ]
Zhao, Zhengtuo [1 ]
Li, Xue [1 ]
Zhu, Hanlin [1 ]
Potnis, Ojas [1 ]
Xie, Chong [1 ]
机构
[1] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
来源
ADVANCED SCIENCE | 2018年 / 5卷 / 06期
关键词
electron-beam lithography; flexible neural electrodes; high-density intracortical recording; in vivo extracellular recording; nanofabrication; CONDUCTING-POLYMER NANOTUBES; DEEP BRAIN-STIMULATION; MICROELECTRODE ARRAYS; NEURAL INTERFACE; SUBSTRATE; TISSUE; IMPROVE; SURFACE; RESIST;
D O I
10.1002/advs.201700625
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding brain functions at the circuit level requires time-resolved simultaneous measurement of a large number of densely distributed neurons, which remains a great challenge for current neural technologies. In particular, penetrating neural electrodes allow for recording from individual neurons at high temporal resolution, but often have larger dimensions than the biological matrix, which induces significant damage to brain tissues and therefore precludes the high implant density that is necessary for mapping large neuronal populations with full coverage. Here, it is demonstrated that nanofabricated ultraflexible electrode arrays with cross-sectional areas as small as sub-10 mu m(2) can overcome this physical limitation. In a mouse model, it is shown that these electrodes record action potentials with high signal-to-noise ratio; their dense arrays allow spatial oversampling; and their multiprobe implantation allows for interprobe spacing at 60 mu m without eliciting chronic neuronal degeneration. These results present the possibility of minimizing tissue displacement by implanted ultraflexible electrodes for scalable, high-density electrophysiological recording that is capable of complete neuronal circuitry mapping over chronic time scales.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes [J].
Du, Jiangang ;
Blanche, Timothy J. ;
Harrison, Reid R. ;
Lester, Henry A. ;
Masmanidis, Sotiris C. .
PLOS ONE, 2011, 6 (10)
[22]   Design and Test of an Intraoral Electrode Grid for Tongue High-Density Electromyography [J].
Botter, Alberto ;
Vieira, Taian ;
Busso, Chiara ;
Vitali, Federica ;
Gazzoni, Marco ;
Cerone, Giacinto L. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 :2805-2814
[23]   Highly Controllable Epitaxial Growth of High-Density Nonpolar GaN Nanorod Arrays [J].
Li, Pengkun ;
Wang, Lilin ;
Chen, He ;
Ji, Nanzheng ;
Lee, Chunyu ;
Sun, Shujing ;
Zhang, Zhicheng ;
Chou, Mitch M. C. ;
Chen, Chenlong .
CRYSTAL GROWTH & DESIGN, 2024, 24 (07) :3055-3064
[24]   Fabrication of High-Density and Superuniform Gold Nanoelectrode Arrays for Electrochemical Fluorescence Imaging [J].
Qin, Xiang ;
Li, Zhong-Qiu ;
Zhou, Yue ;
Pan, Jian-Bin ;
Li, Jian ;
Wang, Kang ;
Xu, Jing-Juan ;
Xia, Xing-Hua .
ANALYTICAL CHEMISTRY, 2020, 92 (19) :13493-13499
[25]   Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts [J].
Hu, Yue ;
Kang, Lixing ;
Zhao, Qiuchen ;
Zhong, Hua ;
Zhang, Shuchen ;
Yang, Liangwei ;
Wang, Zequn ;
Lin, Jingjing ;
Li, Qingwen ;
Zhang, Zhiyong ;
Peng, Lianmao ;
Liu, Zhongfan ;
Zhang, Jin .
NATURE COMMUNICATIONS, 2015, 6
[26]   High-Density Pd Nanorod Arrays on Au Nanocrystals for High-Performance Ethanol Electrooxidation [J].
Fang, Caihong ;
Bi, Ting ;
Ding, Qian ;
Cui, Zhiqing ;
Yu, Nan ;
Xu, Xiaoxiao ;
Geng, Baoyou .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (22) :20117-20124
[27]   Design Challenges for Sense Amplifier and Wireless Link in High-Density Neural Recording Implants [J].
Elzeftawi, Mohamed N. ;
Yue, C. Patrick ;
Theogarajan, Luke .
2010 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN AUTOMATION AND TEST (VLSI-DAT), 2010, :61-64
[28]   Engineered biological neural networks on high density CMOS micro electrode arrays [J].
Duru, Jens ;
Kuechler, Joeel ;
Ihle, Stephan J. ;
Forro, Csaba ;
Bernardi, Aeneas ;
Girardin, Sophie ;
Hengsteler, Julian ;
Wheeler, Stephen ;
Voeroes, Janos ;
Ruff, Tobias .
FRONTIERS IN NEUROSCIENCE, 2022, 16
[29]   Feasibility of high-density electrophysiological study using multiple-electrode array in isolated small animal atria [J].
Lau, Dennis H. ;
Mackenzie, Lorraine ;
Shipp, Nicholas J. ;
Kuklik, Pawel ;
Dimitri, Hany ;
Lobb, Bruce L. W. ;
Alasady, Muayad ;
Lim, Han S. ;
Kelly, Douglas R. ;
Brooks, Anthony G. ;
Saint, David A. ;
Sanders, Prashanthan .
CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2010, 37 (10) :1023-1027
[30]   Technology Trends and Commercialization of High-density Microelectrode Arrays for Advanced In-vitro Electrophysiology [J].
Frey, Urs ;
Obien, Marie E. ;
Mueller, Jan ;
Hierlemann, Andreas .
2017 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2017, :10-10