Maintaining and breaking symmetry in homomeric coiled-coil assemblies

被引:46
作者
Rhys, Guto G. [1 ]
Wood, Christopher W. [1 ]
Lang, Eric J. M. [1 ,2 ]
Mulholland, Adrian J. [1 ,2 ,3 ]
Brady, R. Leo [4 ]
Thomson, Andrew R. [1 ,5 ]
Woolfson, Derek N. [1 ,2 ,4 ]
机构
[1] Univ Bristol, Sch Chem, Cantocks Close, Bristol BS8 1TS, Avon, England
[2] Univ Bristol, BrisSynBio, Life Sci Bldg,Tyndall Ave, Bristol BS8 1TQ, Avon, England
[3] Univ Bristol, Sch Chem, Ctr Computat Chem, Cantocks Close, Bristol BS8 1TS, Avon, England
[4] Univ Bristol, Sch Biochem, Med Sci Bldg, Bristol BS8 1TD, Avon, England
[5] Univ Glasgow, Sch Chem, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 欧洲研究理事会;
关键词
EXCHANGE MOLECULAR-DYNAMICS; PROTEIN SIDE-CHAIN; CRYSTAL-STRUCTURE; CRYSTALLOGRAPHIC STRUCTURE; HELICAL NANOTUBES; MEMBRANE-PROTEIN; DESIGN; CHANNEL; RESOLUTION; PEPTIDE;
D O I
10.1038/s41467-018-06391-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In coiled-coil (CC) protein structures a-helices wrap around one another to form rope-like assemblies. Most natural and designed CCs have two-four helices and cyclic (C-n) or dihedral (D-n) symmetry. Increasingly, CCs with five or more helices are being reported. A subset of these higher-order CCs is of interest as they have accessible central channels that can be functionalised; they are alpha-helical barrels. These extended cavities are surprising given the drive to maximise buried hydrophobic surfaces during protein folding and assembly in water. Here, we show that alpha-helical barrels can be maintained by the strategic placement of beta-branched aliphatic residues lining the lumen. Otherwise, the structures collapse or adjust to give more-complex multi-helix assemblies without C-n or D-n symmetry. Nonetheless, the structural hallmark of CCs-namely, knobs-into-holes packing of side chains between helices-is maintained leading to classes of CCs hitherto unobserved in nature or accessed by design.
引用
收藏
页数:12
相关论文
共 66 条
[1]   Towards automated crystallographic structure refinement with phenix.refine [J].
Afonine, Pavel V. ;
Grosse-Kunstleve, Ralf W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Moriarty, Nigel W. ;
Mustyakimov, Marat ;
Terwilliger, Thomas C. ;
Urzhumtsev, Alexandre ;
Zwart, Peter H. ;
Adams, Paul D. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2012, 68 :352-367
[2]   Principles of assembly reveal a periodic table of protein complexes [J].
Ahnert, Sebastian E. ;
Marsh, Joseph A. ;
Hernandez, Helena ;
Robinson, Carol V. ;
Teichmann, Sarah A. .
SCIENCE, 2015, 350 (6266)
[3]   Functional determinants of protein assembly into homomeric complexes [J].
Bergendahl, L. Therese ;
Marsh, Joseph A. .
SCIENTIFIC REPORTS, 2017, 7
[4]   Modular Design of Self-Assembling Peptide-Based Nanotubes [J].
Burgess, Natasha C. ;
Sharp, Thomas H. ;
Thomas, Franziska ;
Wood, Christopher W. ;
Thomson, Andrew R. ;
Zaccai, Nathan R. ;
Brady, R. Leo ;
Serpell, Louise C. ;
Woolfson, Derek N. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (33) :10554-10562
[5]  
Burton AJ, 2016, NAT CHEM, V8, P837, DOI [10.1038/nchem.2555, 10.1038/NCHEM.2555]
[6]   How to untwist an α-helix:: Structural principles of an α-helical barrel [J].
Calladine, CR ;
Sharff, A ;
Luisi, B .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 305 (03) :603-618
[7]   Conformational Activation of a Transmembrane Proton Channel from Constant pH Molecular Dynamics [J].
Chen, Wei ;
Huang, Yandong ;
Shen, Jana .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (19) :3961-3966
[8]   HELIX TO HELIX PACKING IN PROTEINS [J].
CHOTHIA, C ;
LEVITT, M ;
RICHARDSON, D .
JOURNAL OF MOLECULAR BIOLOGY, 1981, 145 (01) :215-250
[9]  
COHEN CAROLYN, 1963, JOUR MOLECULAR BIOL, V6, P423
[10]   THE PACKING OF ALPHA-HELICES - SIMPLE COILED-COILS [J].
CRICK, FHC .
ACTA CRYSTALLOGRAPHICA, 1953, 6 (8-9) :689-697