PerfDB: A Data Management System for Fine-Grained Performance Anomaly Detection

被引:1
作者
Kimball, Joshua [1 ]
Lima, Rodrigo Alves [1 ]
Kanemasa, Yasuhiko [2 ]
Pu, Calton [1 ]
机构
[1] Georgia Inst Technol, Sch Comp Sci, Atlanta, GA 30332 USA
[2] Fujitsu Labs Ltd, Syst Software Labs, Kawasaki, Kanagawa, Japan
来源
2020 IEEE 6TH INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC 2020) | 2020年
基金
美国国家科学基金会;
关键词
data management; systems performance; anomaly detection; log analysis; data mining; BOTTLENECKS;
D O I
10.1109/CIC50333.2020.00021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we present our performance data management system, PerfDB, that we use to study fine-grained performance anomalies like Millibottlenecks. We use it to present the first experimental evidence of a phenomenon we call, "Localized Latency Requests." These are performance bugs that are part of the long-tail of system latency. We also provide a population study of Very Long Response Time (VLRT) requests, a separate performance anomaly belonging to the latency long tail, being inducing by millibottlenecks through queueing effects.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 33 条
  • [1] Aguilera M. K., 2003, Operating Systems Review, V37, P74, DOI 10.1145/1165389.945454
  • [2] [Anonymous], 2012, 10 USENIX S OP SYST
  • [3] [Anonymous], 2014, 2014 C TIM RES OP SY
  • [4] A View of Cloud Computing
    Armbrust, Michael
    Fox, Armando
    Griffith, Rean
    Joseph, Anthony D.
    Katz, Randy
    Konwinski, Andy
    Lee, Gunho
    Patterson, David
    Rabkin, Ariel
    Stoica, Ion
    Zaharia, Matei
    [J]. COMMUNICATIONS OF THE ACM, 2010, 53 (04) : 50 - 58
  • [5] Chow MIchael, 2014, 11 USENIX S OP SYST, P217
  • [6] Cohen I, 2004, USENIX ASSOCIATION PROCEEDINGS OF THE SIXTH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDE '04), P231
  • [7] The Tail at Scale
    Dean, Jeffrey
    Barroso, Luiz Andre
    [J]. COMMUNICATIONS OF THE ACM, 2013, 56 (02) : 74 - 80
  • [8] DeCandia Giuseppe, 2007, Operating Systems Review, V41, P205, DOI 10.1145/1323293.1294281
  • [9] Delforge Pierre, 2014, DATA CTR EFFICIENCY
  • [10] DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning
    Du, Min
    Li, Feifei
    Zheng, Guineng
    Srikumar, Vivek
    [J]. CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2017, : 1285 - 1298