Surface water map of China for 2015 (SWMC-2015) derived from Landsat 8 satellite imagery

被引:19
作者
Jiang, Wei [1 ,2 ,3 ]
He, Guojin [3 ,4 ]
Pang, Zhiguo [1 ,2 ]
Guo, Hongxiang [3 ,5 ]
Long, Tengfei [3 ,4 ]
Ni, Yuan [6 ]
机构
[1] China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing, Peoples R China
[2] Minist Water Resources, Remote Sensing Technol Applicat Ctr, Res Ctr Flood & Drought Disaster Reduct, Beijing, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[4] Chinese Acad Sci, Key Lab Earth Observat Hainan Prov, Sanya, Hainan, Peoples R China
[5] Univ Chinese Acad Sci, Coll Resources & Environmet, Beijing, Peoples R China
[6] Sichuan Highway Planning Survey Design & Res Inst, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
OLI IMAGERY; INUNDATION;
D O I
10.1080/2150704X.2019.1708501
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Large-scale surface water mapping not only helps us protect, utilize and manage water resources but also contributes to the understanding of climate change and the hydrologic cycle. A recent study showed that a multilayer perceptron (MLP) neural network is an effective method to identify various surface water types from Landsat 8 Operational Land Imager (OLI) satellite imagery. We use this method to produce a surface water map of China for 2015 (SWMC-2015) at a 30 m pixel size. The accuracy of SWMC-2015 was assessed with a set of random water and not water validation points. The strengths and limitations of SWMC-2015 include: the SWMC-2015 clearly shows the major lake clusters and river networks with high mapping accuracy and the overall accuracy and kappa coefficients of SWMC-2015 are 90% and 0.78, respectively. The accuracy of SWMC-2015 can be improved from perspective of training samples representation, verification sample seasonal fluctuation and mixed pixel. The SWMC-2015 is available for free download on the remote sensing of global change website (https://vapd.gitlab.io/post/swmc2015/).
引用
收藏
页码:265 / 273
页数:9
相关论文
共 26 条
  • [1] Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree
    Acharya, Tri Dev
    Lee, Dong Ha
    Yang, In Tae
    Lee, Jae Kang
    [J]. SENSORS, 2016, 16 (07)
  • [2] A new global raster water mask at 250 m resolution
    Carroll, M. L.
    Townshend, J. R.
    DiMiceli, C. M.
    Noojipady, P.
    Sohlberg, R. A.
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2009, 2 (04) : 291 - 308
  • [3] Earth's surface water change over the past 30 years
    Donchyts, Gennadii
    Baart, Fedor
    Winsemius, Hessel
    Gorelick, Noel
    Kwadijk, Jaap
    van de Giesen, Nick
    [J]. NATURE CLIMATE CHANGE, 2016, 6 (09) : 810 - 813
  • [4] Analysis of Landsat-8 OLI imagery for land surface water mapping
    Du, Zhiqiang
    Li, Wenbo
    Zhou, Dongbo
    Tian, Liqiao
    Ling, Feng
    Wang, Hailei
    Gui, Yuanmiao
    Sun, Bingyu
    [J]. REMOTE SENSING LETTERS, 2014, 5 (07) : 672 - 681
  • [5] Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010
    Feng, Lian
    Hu, Chuanmin
    Chen, Xiaoling
    Cai, Xiaobin
    Tian, Liqiao
    Gan, Wenxia
    [J]. REMOTE SENSING OF ENVIRONMENT, 2012, 121 : 80 - 92
  • [6] A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic-spectral classification algorithm
    Feng, Min
    Sexton, Joseph O.
    Channan, Saurabh
    Townshend, John R.
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2016, 9 (02) : 113 - 133
  • [7] Super-resolution mapping of the waterline from remotely sensed data
    Foody, GM
    Muslim, AM
    Atkinson, PM
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (24) : 5381 - 5392
  • [8] Global water resources affected by human interventions and climate change
    Haddeland, Ingjerd
    Heinke, Jens
    Biemans, Hester
    Eisner, Stephanie
    Floerke, Martina
    Hanasaki, Naota
    Konzmann, Markus
    Ludwig, Fulco
    Masaki, Yoshimitsu
    Schewe, Jacob
    Stacke, Tobias
    Tessler, Zachary D.
    Wada, Yoshihide
    Wisser, Dominik
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (09) : 3251 - 3256
  • [9] Hanson MA, 2012, SCIENCE, V335, P851, DOI [10.1126/science.1215904, 10.1126/science.1244693]
  • [10] Generation of ready to use (RTU) products over China based on Landsat series data
    He, Guojin
    Zhang, Zhaoming
    Jiao, Weili
    Long, Tengfei
    Peng, Yan
    Wang, Guizhou
    Yin, Ranyu
    Wang, Wei
    Zhang, Xiaomei
    Liu, Huichan
    Cheng, Bo
    Xiang, Bo
    [J]. BIG EARTH DATA, 2018, 2 (01) : 56 - 64