A note on the endomorphism ring of finitely presented modules of the projective dimension ≤ 1

被引:0
作者
Sahinkaya, Serap [1 ]
Kor, Arda [1 ]
Kosan, M. Tamer [1 ]
机构
[1] Gebze Inst Technol, Dept Math, TR-41400 Gebze, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2014年 / 43卷 / 06期
关键词
Couniformly presented module; Semilocal ring; Monogeny class; Epigeny class; HOMOGENEOUS SEMILOCAL RINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the behavior of endomorphism rings of a cyclic, finitely presented module of projective dimension <= 1. This class of modules extends to arbitrary rings the class of couniformly presented modules over local rings.
引用
收藏
页码:985 / 991
页数:7
相关论文
共 7 条
  • [1] Equivalence of diagonal matrices over local rings
    Amini, Babak
    Amini, Afshin
    Facchini, Alberto
    [J]. JOURNAL OF ALGEBRA, 2008, 320 (03) : 1288 - 1310
  • [2] Krull-Schmidt Theorem and homogeneous semilocal rings
    Barioli, F
    Facchini, A
    Raggi, F
    Ríos, J
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (04) : 1649 - 1658
  • [3] Bumby R. T., 1965, ARCH MATH, V16, P184
  • [4] Homogeneous semilocal rings
    Corisello, R
    Facchini, A
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (04) : 1807 - 1819
  • [5] Krull-Schmidt fails for serial modules
    Facchini, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (11) : 4561 - 4575
  • [6] Facchini A., 2013, MODULE THEORY ENDOMO, V167
  • [7] Couniformly Presented Modules and Dualities
    Facchini, Alberto
    Girardi, Nicola
    [J]. ADVANCES IN RING THEORY, 2010, : 149 - 164