Optical and structural properties of MOVPE-grown GaInSb/GaSb quantum wells

被引:1
作者
Wagener, Viera [1 ]
Olivier, E. J. [1 ]
Botha, J. R. [1 ]
机构
[1] Nelson Mandela Metropolitan Univ, Dept Phys, ZA-6031 Port Elizabeth, South Africa
基金
新加坡国家研究基金会;
关键词
III-V antimonides; Strained layers; Photoluminescence; INFRARED DETECTORS; PHOTOLUMINESCENCE; SUPERLATTICES; GAINSB/INAS; EPITAXY;
D O I
10.1016/j.physb.2009.08.277
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This paper reports on the optical and structural properties of strained type-I Ga(1-x)In(x)Sb quantum wells embedded in GaSb from a metal-organic vapour phase epitaxial growth perspective. Photoluminescence measurements and transmission electron microscopy were used to evaluate the effect of the growth temperature on the quality of Ga(1-x)In(x)Sb strained layers with varied alloy compositions and thicknesses. Although the various factors contributing to the overall quality of the strained layers are difficult to separate, the quantum well characteristics are significantly altered by the growth temperature. Despite the high growth rates (similar to 2 nm/s), quantum wells grown at 607 degrees C display photoluminescence emissions with full-width at half-maximum of 3.5-5.0 meV for an indium solid content (x) up to 0.15. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:5167 / 5169
页数:3
相关论文
共 50 条
  • [41] Optical anisotropy of InAs/GaSb broken-gap quantum wells
    Zakharova, A. A.
    Semenikhin, I. A.
    Chao, K. A.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2012, 114 (05) : 731 - 737
  • [42] Non-destructive mapping of doping and structural composition of MOVPE-grown high current density resonant tunnelling diodes through photoluminescence spectroscopy
    Jacobs, K. J. P.
    Stevens, B. J.
    Mukai, T.
    Ohnishi, D.
    Hogg, R. A.
    JOURNAL OF CRYSTAL GROWTH, 2015, 418 : 102 - 110
  • [43] Optical and structural properties of InGaSb/GaAs quantum dots grown by molecular beam epitaxy
    Hodgson, P. D.
    Bentley, M.
    Delli, E.
    Beanland, R.
    Wagener, M. C.
    Botha, J. R.
    Carrington, P. J.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2018, 33 (12)
  • [44] Step annealing effects on the structural and optical properties of InAs quantum dots grown on GaAs
    Park, Ho Jin
    Kim, Jong Ho
    Yoon, J. J.
    Son, J. S.
    Lee, D. Y.
    Ryu, H. H.
    Jeon, Minhyon
    Leem, J. Y.
    JOURNAL OF CRYSTAL GROWTH, 2007, 300 (02) : 319 - 323
  • [45] Structural and optical properties of nonpolar InGaN/GaN multiple quantum wells grown on planar and lateral epitaxially overgrown m-plane GaN films
    Chakraborty, Arpan
    Haskell, Benjamin A.
    Wu, Feng
    Keller, Stacia
    DenBaars, Steven P.
    Nakamura, Shuji
    Speck, James S.
    Mishra, Umesh K.
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (02): : 542 - 546
  • [46] Influence of substrate misorientation on the optical and structural properties of InGaAs/GaAs single strained quantum wells grown on (111)B GaAs by molecular beam epitaxy
    Sánchez, JJ
    Gutiérrez, M
    González, D
    Aragón, G
    Tijero, JMG
    Sánchez-Rojas, JL
    Izpura, I
    García, R
    MICROELECTRONICS JOURNAL, 1999, 30 (4-5) : 373 - 378
  • [47] Dependence of optimum V/III ratio on substrate orientation, and influence of buffer layer on MOVPE grown InSb/GaSb quantum dots
    Ahia, Chinedu Christian
    Tile, Ngcali
    Botha, Johannes Reinhardt
    JOURNAL OF CRYSTAL GROWTH, 2019, 507 : 157 - 162
  • [48] Optical properties of GaN/AlN multiple quantum wells
    Lin, TY
    Sheu, YM
    Chen, YF
    Lin, JY
    Jiang, HX
    SOLID STATE COMMUNICATIONS, 2004, 131 (06) : 389 - 392
  • [49] Optical properties of remotely doped parabolic quantum wells
    Tabata, A
    Oliveira, JBB
    Lamas, TE
    Sergio, CS
    Quivy, AA
    Gusev, GM
    Leite, JR
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 17 (1-4) : 262 - 263
  • [50] Optical Properties of Short-Period InAs/GaSb Superlattices Grown by MOCVD
    L. V. Danilov
    R. V. Levin
    V. N. Nevedomskyi
    B. V. Pushnyi
    Semiconductors, 2019, 53 : 2078 - 2081