Constructing consistent fuzzy surfaces from fuzzy data

被引:22
作者
Lodwick, WA [1 ]
Santos, J [1 ]
机构
[1] Univ Colorado, Dept Math, Denver, CO 80217 USA
关键词
fuzzy numbers; fuzzy interpolation; fuzzy surface; fuzzy DTM;
D O I
10.1016/S0165-0114(02)00139-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given fuzzy data describing a three-dimensional entity such as terrain, we develop methods to construct surfaces that are consistent with the uncertainty in the data and surface model itself. In particular, surfaces generated from higher a-cut values of the fuzzy data are contained within the surfaces generated by lower a-cut values of the fuzzy data. Moreover, the smoothness and continuity conditions of the surface generating method is maintained by each level surface. We demonstrate the ideas by developing two- and three-dimensional surfaces from fuzzy data for cubic splines and digital terrain models generated from triangulation. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:259 / 277
页数:19
相关论文
共 9 条
[1]   Modeling uncertain data with fuzzy B-splines [J].
Anile, AM ;
Falcidieno, B ;
Gallo, G ;
Spagnuolo, M ;
Spinello, S .
FUZZY SETS AND SYSTEMS, 2000, 113 (03) :397-410
[2]   INTERVAL-VALUED RANDOM FUNCTIONS AND THE KRIGING OF INTERVALS [J].
DIAMOND, P .
MATHEMATICAL GEOLOGY, 1988, 20 (03) :145-165
[3]   FUZZY KRIGING [J].
DIAMOND, P .
FUZZY SETS AND SYSTEMS, 1989, 33 (03) :315-332
[4]  
Dubois D, 2000, HDB FUZZ SET SER, V7, P483
[5]  
JAMISON KD, 2001, 171 UCDCCM
[6]   INTERPOLATION OF FUZZY DATA [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1994, 61 (01) :63-70
[7]   A FUZZY LAGRANGE INTERPOLATION THEOREM [J].
LOWEN, R .
FUZZY SETS AND SYSTEMS, 1990, 34 (01) :33-38
[8]  
MOORE RE, 1979, METHODS APPL INTERVE
[9]  
SHEWCHUCK J, 1997, THESIS CARNEGIE MELL