Global existence and non-existence theorems for nonlinear wave equations

被引:50
作者
Pitts, DR [1 ]
Rammaha, MA [1 ]
机构
[1] Univ Nebraska, Dept Math & Stat, Lincoln, NE 68588 USA
关键词
wave equations; damping and source terms; weak solutions; blow-up of solutions;
D O I
10.1512/iumj.2002.51.2215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we focus on the global well-posedness of an initial-boundary value problem for a nonlinear wave equation in all space dimensions. The nonlinearity in the equation features the damping term /u/(k)/u(t)/(m) sgn(u(t)) and a source term of the form /u/(p-1)u, where k, p greater than or equal to 1 and 0 < m < 1. In addition, if the space dimension n greater than or equal to 3, then the parameters k, m and p satisfy p, k/(1 - m) less than or equal to n/(n - 2). We show that whenever k + m greater than or equal to p, then local weak solutions are global. On the other hand, we prove that whenever p > k + m and the initial energy is negative, then local weak solutions blow-up in finite time, regardless of the size of the initial data.
引用
收藏
页码:1479 / 1509
页数:31
相关论文
共 31 条
[1]  
ADAMS RA, 1975, SOLEV SPACES
[2]  
Agre K., 2001, DIFFERENTIAL INTEGRA, V14, P1315, DOI DOI 10.1016/J.JDE.2004.04.011
[3]   MIXED PROBLEM FOR SOME SEMI-LINEAR WAVE-EQUATION WITH A NONHOMOGENEOUS CONDITION [J].
ANG, DD ;
DINH, APN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (06) :581-592
[5]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308
[6]   BLOW-UP THEOREMS FOR NONLINEAR WAVE-EQUATIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1973, 132 (03) :183-203
[7]  
GREENBERG JM, 1968, J MATH MECH, V17, P707
[8]   CARACTERISATION DE QUELQUES ESPACES DINTERPOLATION [J].
GRISVARD, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 25 (01) :40-&
[9]  
Grisvard P., 1969, ANN SCI ECOLE NORM S, V2, P311, DOI DOI 10.24033/ASENS.1178
[10]   DECAY-ESTIMATES FOR SOME SEMILINEAR DAMPED HYPERBOLIC PROBLEMS [J].
HARAUX, A ;
ZUAZUA, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 100 (02) :191-206