Optimal Boundary Control of the Boussinesq Approximation for Polymeric Fluids

被引:29
作者
Baranovskii, Evgenii S. [1 ]
机构
[1] Voronezh State Univ, Voronezh, Russia
关键词
Optimal control; Boundary control; Marginal function; Non-isothermal flows; Aqueous polymer solutions; Boussinesq equations; NAVIER-STOKES; EXACT CONTROLLABILITY; SOLVABILITY; MODEL; FLOW;
D O I
10.1007/s10957-021-01849-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider an optimal control problem for non-isothermal steady flows of low-concentrated aqueous polymer solutions in a bounded 3D domain. In this problem, the state functions are the flow velocity and the temperature, while the control function is the heat flux through a given part of the boundary of the flow domain. We obtain sufficient conditions for the existence of weak solutions that minimize a cost functional under a given bounded set of admissible controls. It is shown that the marginal function of the considered control system is lower semi-continuous and the optimal states operator generates a continuous branch in a suitable function space.
引用
收藏
页码:623 / 645
页数:23
相关论文
共 30 条
[21]  
Oskolkov A. P., 1973, ZAP NAUCN SEM LENING, V38, P98, DOI DOI 10.1007/BF01084613
[22]  
Oskolkov AP, 1985, SEMINAROV LENINGRADS, V147, P110
[23]  
PAVLOVSK.VA, 1971, DOKL AKAD NAUK SSSR+, V200, P809
[24]   On the Unique Solvability of the Problem of the Flow of an Aqueous Solution of Polymers near a Critical Point [J].
Petrova, A. G. .
MATHEMATICAL NOTES, 2019, 106 (5-6) :784-793
[25]   Numerical solution of an optimal control problem for Oskolkov's system [J].
Plekhanova, Marina V. ;
Baybulatova, Gusel D. ;
Davydov, Pavel N. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) :9071-9080
[26]  
Pukhnacheva TP, 2016, T SEM GEOM I MAT MOD, V2, P75
[27]   The Nonautonomous Linear Oskolkov Model on a Geometrical Graph: The Stability of Solutions and the Optimal Control Problem [J].
Sagadeeva, Minzilia A. ;
Sviridyuk, Georgy A. .
SEMIGROUPS OF OPERATORS - THEORY AND APPLICATIONS, 2015, 113 :257-271
[28]   An optimal control problem for the Oskolkov equation [J].
Sviridyuk, GA ;
Plekhanova, MV .
DIFFERENTIAL EQUATIONS, 2002, 38 (07) :1064-1066
[29]  
Temam R., 1977, The Navier-Stokes equations
[30]  
Zvyagin AV, 2013, DIFF URAVN, V49, P245