Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis

被引:110
|
作者
Yuan, Yangyang [1 ,2 ]
Fang, Linchuan [1 ,2 ]
Karungo, Sospeter Karanja [1 ,2 ]
Zhang, Langlang [1 ,2 ]
Gao, Yingying [1 ,2 ]
Li, Shaohua [1 ,3 ,4 ]
Xin, Haiping [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Wuhan Bot Garden, Key Lab Plant Germplasm Enhancement & Specialty A, Wuhan 430074, Peoples R China
[2] Univ Chinese Acad Sci, 19A Yuquanlu, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Beijing Key Lab Grape Sci & Enol, Inst Bot, Beijing 100093, Peoples R China
[4] Chinese Acad Sci, CAS Key Lab Plant Resources, Inst Bot, Beijing 100093, Peoples R China
基金
美国国家科学基金会;
关键词
GRAS transcription factor; VaPAT1; Vitis amurensis; Abiotic stress; Gibberellic acid (GA); Stress-related genes; SIGNAL-TRANSDUCTION; ABSCISIC-ACID; DROUGHT TOLERANCE; COLD TOLERANCE; GENE FAMILY; GIBBERELLIN RESPONSES; EXPRESSION ANALYSIS; TRANSGENIC RICE; SALT STRESSES; THALIANA;
D O I
10.1007/s00299-015-1910-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The plant-specific GRAS transcription factor family regulates diverse processes involved in plant growth, development and stress responses. In this study, VaPAT1, a GRAS gene from Vitis amurensis was isolated and functionally characterized. Sequence alignment and phylogenetic analysis showed that VaPAT1 has a high sequence identity to CmsGRAS and OsCIGR1, which belong to PAT1 branch of GRAS family and function in stress resistance. The transcription of VaPAT1 was markedly induced by stress-related phytohormone abscisic acid (ABA) and various abiotic stress treatments such as cold, drought and high salinity, however, it was repressed by exogenous gibberellic acid (GA) application. Overexpression of VaPAT1 increased the cold, drought and high salinity tolerance in transgenic Arabidopsis. When compared with wild type (WT) seedlings, the VaPAT1-overexpression lines accumulated higher levels of proline and soluble sugar under these stress treatments. Moreover, stress-related genes such as AtSIZ1, AtCBF1, AtATR1/MYB34, AtMYC2, AtCOR15A, AtRD29A and AtRD29B showed higher expression levels in VaPAT1 transgenic lines than in WT Arabidopsis under normal growth conditions. Together, our results indicated that VaPAT1 functions as a positive transcriptional regulator involved in grapevine abiotic stress responses.
引用
收藏
页码:655 / 666
页数:12
相关论文
共 50 条
  • [41] TaWRKY71, a WRKY Transcription Factor from Wheat, Enhances Tolerance to Abiotic Stress in Transgenic Arabidopsis thaliana
    Q. Xu
    W. J. Feng
    H. R. Peng
    Z. F. Ni
    Q. X. Sun
    Cereal Research Communications, 2014, 42 : 47 - 57
  • [42] Picea wilsonii NAC Transcription Factor PwNAC30 Negatively Regulates Abiotic Stress Tolerance in Transgenic Arabidopsis
    Liang, Ke-hao
    Wang, Ai-bin
    Yuan, Yi-hang
    Miao, Ya-hui
    Zhang, Ling-yun
    PLANT MOLECULAR BIOLOGY REPORTER, 2020, 38 (04) : 554 - 571
  • [43] A Stress-Responsive CaM-Binding Transcription Factor, bZIP4, Confers Abiotic Stress Resistance in Arabidopsis
    Minsoo Noh
    A. K. M. Mahmudul Huque
    Kwang Wook Jung
    Yun Young Kim
    Jeong Sheop Shin
    Journal of Plant Biology, 2021, 64 : 359 - 370
  • [44] Overexpression of the GmNAC2 Gene, an NAC Transcription Factor, Reduces Abiotic Stress Tolerance in Tobacco
    Hangxia Jin
    Fang Huang
    Hao Cheng
    Haina Song
    Deyue Yu
    Plant Molecular Biology Reporter, 2013, 31 : 435 - 442
  • [45] A Stress-Responsive CaM-Binding Transcription Factor, bZIP4, Confers Abiotic Stress Resistance in Arabidopsis
    Noh, Minsoo
    Huque, A. K. M. Mahmudul
    Jung, Kwang Wook
    Kim, Yun Young
    Shin, Jeong Sheop
    JOURNAL OF PLANT BIOLOGY, 2021, 64 (04) : 359 - 370
  • [46] Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic Arabidopsis
    Min Lu
    Deng-Feng Zhang
    Yun-Su Shi
    Yan-Chun Song
    Tian-Yu Wang
    Yu Li
    Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 115 : 443 - 455
  • [47] Heterologous expression of the maize transcription factor ZmbHLH36 enhances abiotic stress tolerance in Arabidopsis
    Dai, Zhenggang
    Zhao, Keyong
    Zheng, Dengyu
    Guo, Siyu
    Zou, Huawen
    Wu, Zhongyi
    Zhang, Chun
    ABIOTECH, 2024, 5 (03) : 339 - 350
  • [48] Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress
    Babitha, K. C.
    Vemanna, Ramu S.
    Nataraja, Karaba N.
    Udayakumar, M.
    PLOS ONE, 2015, 10 (09):
  • [49] Overexpression of ethylene response factors VaERF080 and VaERF087 from Vitis amurensis enhances cold tolerance in Arabidopsis
    Sun, Xiaoming
    Zhu, Zhenfei
    Zhang, Langlang
    Fang, Linchuan
    Zhang, Jisen
    Wang, Qingfeng
    Li, Shaohua
    Liang, Zhenchang
    Xin, Haiping
    SCIENTIA HORTICULTURAE, 2019, 243 : 320 - 326
  • [50] Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice
    Chen, Miao
    Zhao, Yujuan
    Zhuo, Chunliu
    Lu, Shaoyun
    Guo, Zhenfei
    PLANT BIOTECHNOLOGY JOURNAL, 2015, 13 (04) : 482 - 491