Special conformal groups of a Riemannian manifold and Lie point symmetries of the nonlinear Poisson equation

被引:40
作者
Bozhkov, Yuri [1 ]
Freire, Igor Leite [1 ,2 ]
机构
[1] Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP, Brazil
[2] Univ Fed ABC UFABC, Ctr Matemat Comp & Cognicao, BR-09090400 Santo Andre, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Lie point symmetry; Noether symmetry; Conservation laws; Conformal group; PARTIAL-DIFFERENTIAL-EQUATIONS; DIRECT CONSTRUCTION METHOD; CONSERVATION-LAWS; GROUP CLASSIFICATION; WAVE-EQUATION; SURFACES;
D O I
10.1016/j.jde.2010.04.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a complete group classification of the Lie point symmetries of nonlinear Poisson equations on generic (pseudo) Riemannian manifolds M. Using this result we study their Noether symmetries and establish the respective conservation laws. It is shown that the projection of the Lie point symmetries on M are special subgroups of the conformal group of M. In particular, if the scalar curvature of M vanishes, the projection on M of the Lie point symmetry group of the Poisson equation with critical nonlinearity is the conformal group of the manifold. We illustrate our results by applying them to the Thurston geometries. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:872 / 913
页数:42
相关论文
共 31 条
[1]   Lie point symmetries of difference equations for the nonlinear sine-Gordon equation [J].
Yildirim, Ozgur ;
Caglak, Sumeyra .
PHYSICA SCRIPTA, 2019, 94 (08)
[2]   Potential systems of a Buckley-Leverett equation: Lie point symmetries and conservation laws [J].
Bruzon, M. S. ;
Marquez, A. P. ;
Recio, E. ;
Garrido, T. M. ;
de la Rosa, R. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (04) :831-840
[3]   Similarity solutions and conservation laws for the Bogoyavlensky-Konopelchenko equation by Lie point symmetries [J].
Halder, Amlan K. ;
Leach, P. G. L. ;
Paliathanasis, Andronikos .
QUAESTIONES MATHEMATICAE, 2021, 44 (06) :815-827
[4]   NONLINEAR POTENTIAL FILTRATION EQUATION AND GLOBAL ACTIONS OF LIE SYMMETRIES [J].
Sepanski, Mark R. .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
[5]   Lie-point symmetries of the discrete Liouville equation [J].
Levi, D. ;
Martina, L. ;
Winternitz, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (02)
[6]   Global actions of Lie symmetries for the nonlinear heat equation [J].
Sepanski, Mark R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (01) :35-46
[7]   A nonexistence result for a nonlinear wave equation with damping on a Riemannian manifold [J].
Qiang Ru .
Boundary Value Problems, 2016
[8]   A nonexistence result for a nonlinear wave equation with damping on a Riemannian manifold [J].
Ru, Qiang .
BOUNDARY VALUE PROBLEMS, 2016,
[9]   Potential systems of a Buckley–Leverett equation: Lie point symmetries and conservation laws [J].
M. S. Bruzón ;
A. P. Márquez ;
E. Recio ;
T. M. Garrido ;
R. de la Rosa .
Journal of Mathematical Chemistry, 2020, 58 :831-840
[10]   Lie point symmetries of a general class of PDEs: The heat equation [J].
Paliathanasis, Andronikos ;
Tsamparlis, Michael .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (12) :2443-2456