Computation of the inverse Mittag-Leffler function and its application to modeling ultraslow dynamics

被引:5
作者
Liang, Yingjie [1 ]
Yu, Yue [2 ]
Magin, Richard L. [3 ]
机构
[1] Hohai Univ, Coll Mech & Mat, Key Lab, Minist Educ Coastal Disaster & Protect, 8 Focheng West Rd, Nanjing 211100, Peoples R China
[2] Hohai Univ, Coll Mech & Mat, 8 Focheng West Rd, Nanjing 211100, Peoples R China
[3] Univ Illinois, Dept Biomed Engn, Chicago, IL 60607 USA
基金
中国国家自然科学基金;
关键词
Inverse Mittag-Leffler function (primary); Mittag-Leffler function; Ultraslow diffusion; Ultraslow relaxation; Ultraslow creep; FRACTIONAL CALCULUS; ANOMALOUS DIFFUSION; MAXWELL MODEL; RANDOM-WALK; RELAXATION; ENTROPY;
D O I
10.1007/s13540-022-00020-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse Mittag-Leffler function has been used to model the logarithmic growth of the mean squared displacement in anomalous diffusion, the restricted mobility of membrane proteins, and the slow viscoelastic creep observed in glasses. These applications are hindered because the inverse Mittag-Leffler function has no explicit form and cannot be approximated by existing methods in the domain x is an element of (0, +infinity). This study proposes a conversion method to compute the inverse Mittag-Leffler function in terms of the Mittag-Leffler function. The new method uses the one- and two-parameter Mittag-Leffler function to compute the inverse Mittag-Leffler function in the target domain. We apply this method to fit data collected in studies of: (i) the ultraslow mobility of beta-barrel proteins in bacterial membranes, (ii) the ultraslow creep observed in high strength self-compacting concrete, and (iii) the ultraslow relaxation seen in various glasses. The results show that the inverse Mittag-Leffler function can capture ultraslow dynamics in all three cases. This method may also be extended to other generalized logarithmic laws.
引用
收藏
页码:439 / 452
页数:14
相关论文
共 43 条
  • [1] On relaxations and aging of various glasses
    Amir, Ariel
    Oreg, Yuval
    Imry, Yoseph
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (06) : 1850 - 1855
  • [2] RATIONAL SOLUTIONS FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Atkinson, Colin
    Osseiran, Adel
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (01) : 92 - 106
  • [3] Measurement of anomalous diffusion using recurrent neural networks
    Bo, Stefano
    Schmidt, Falko
    Eichhorn, Ralf
    Volpe, Giovanni
    [J]. PHYSICAL REVIEW E, 2019, 100 (01)
  • [4] STRUCTURAL DERIVATIVE BASED ON INVERSE MITTAG-LEFFLER FUNCTION FOR MODELING ULTRASLOW DIFFUSION
    Chen, Wen
    Liang, Yingjie
    Hei, Xindong
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (05) : 1250 - 1261
  • [5] Algorithms for the fractional calculus: A selection of numerical methods
    Diethelm, K
    Ford, NJ
    Freed, AD
    Luchko, Y
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (6-8) : 743 - 773
  • [6] Experimental evaluation of viscous damping coefficient in the fractional underdamped oscillator
    Escalante-Martinez, J. E.
    Gomez-Aguilar, J. F.
    Calderon-Ramon, C.
    Morales-Mendoza, L. J.
    Cruz-Orduna, I.
    Laguna-Camacho, J. R.
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (04) : 1 - 12
  • [7] Modified Mittag-Leffler Functions with Applications in Complex Formulae for Fractional Calculus
    Fernandez, Arran
    Husain, Iftikhar
    [J]. FRACTAL AND FRACTIONAL, 2020, 4 (03) : 1 - 15
  • [8] RELAXATION AND RETARDATION FUNCTIONS OF THE MAXWELL MODEL WITH FRACTIONAL DERIVATIVES
    FRIEDRICH, C
    [J]. RHEOLOGICA ACTA, 1991, 30 (02) : 151 - 158
  • [9] Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus
    Garrappa, Roberto
    Popolizio, Marina
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) : 129 - 153
  • [10] NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS
    Garrappa, Roberto
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (03) : 1350 - 1369