Digital soil mapping of soil organic carbon stocks in Western Ghats, South India

被引:52
作者
Dharumarajan, S. [1 ]
Kalaiselvi, B. [1 ]
Suputhra, Amar [1 ]
Lalitha, M. [1 ]
Vasundhara, R. [1 ]
Kumar, K. S. Anil [1 ]
Nair, K. M. [1 ]
Hegde, Rajendra [1 ]
Singh, S. K. [2 ]
Lagacherie, Philippe [3 ]
机构
[1] ICAR Natl Bur Soil Survey & Land Use Planning Reg, Bangalore 560024, Karnataka, India
[2] ICAR Natl Bur Soil Survey & Land Use Planning, Amaravati Rd, Nagpur 10, Maharashtra, India
[3] Univ Montpellier, LISAH, INRA, IRD,Montpellier SupAgro, Montpellier, France
关键词
Digital soil mapping; SOC stock; Western Ghats; Quantile Regression Forest; Cross validation; Multiple soil classes; LAND DEGRADATION; DEPTH FUNCTIONS; FOREST; CLASSIFICATION; UNCERTAINTY; PREDICTION; MATTER;
D O I
10.1016/j.geodrs.2021.e00387
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Spatial information of soil carbon storage at national and global level is essential for soil quality and environmental management. Improved knowledge on the amount and spatial distribution of the carbon stock in soils is crucial in estimating changes in the terrestrial carbon dynamics and management options for carbon-storing. A study was conducted to map the soil organic carbon stock (SOC) over 56,763 km(2) area of Western Ghats of south India using a digital soil mapping approach. Landsat data, terrain attributes, and bioclimatic variables were used as covariates. Equal-area quadratic splines were fitted to soil profile datasets to estimate soil organic carbon stock at six standard soil depths (0-5, 5-15, 15-30, 30-60, 60-100 and 100-200 cm) and Quantile Regression Forest (QRF) algorithmwas used to predict the SOC stocks. Prediction of SOC stockwas better for surface layer (R-2 = 31-43%) and the performance was decreasing with depth (R-2 = 7-21%). The modal performance was also compared with SoilGrids products. Although the spatial patterns were similar, the present predicted SOC maps outperformed SoilGrids products in terms of both R-2 and RMSE. The predicted total soil organic stock in the Western Ghats ranged from 7.1 kg m(-2) to 30.9 kg m(-2) and the total estimated SOC was 917 Tg. The present high resolution SOC maps help to assess and monitor the soil health and preparation of proper land use planning. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change [J].
Adhikari, Kabindra ;
Owens, Phillip R. ;
Libohova, Zamir ;
Miller, David M. ;
Wills, Skye A. ;
Nemecek, Jason .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 667 :833-845
[2]   Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark [J].
Adhikari, Kabindra ;
Hartemink, Alfred E. ;
Minasny, Budiman ;
Kheir, Rania Bou ;
Greve, Mette B. ;
Greve, Mogens H. .
PLOS ONE, 2014, 9 (08)
[3]   GlobalSoilMap: Toward a Fine-Resolution Global Grid of Soil Properties [J].
Arrouays, Dominique ;
Grundy, Michael G. ;
Hartemink, Alfred E. ;
Hempel, Jonathan W. ;
Heuvelink, Gerard B. M. ;
Hong, S. Young ;
Lagacherie, Philippe ;
Lelyk, Glenn ;
McBratney, Alexander B. ;
McKenzie, Neil J. ;
Mendonca-Santos, Maria D. L. ;
Minasny, Budiman ;
Montanarella, Luca ;
Odeh, Inakwu O. A. ;
Sanchez, Pedro A. ;
Thompson, James A. ;
Zhang, Gan-Lin .
ADVANCES IN AGRONOMY, VOL 125, 2014, 125 :93-+
[4]  
Bawa K, 2005, SAHYADRIS INDIAS W G
[5]  
Bhatti JS, 2002, CAN J FOREST RES, V32, P805, DOI [10.1139/x01-122, 10.1139/X01-122]
[6]   Modelling soil attribute depth functions with equal-area quadratic smoothing splines [J].
Bishop, TFA ;
McBratney, AB ;
Laslett, GM .
GEODERMA, 1999, 91 (1-2) :27-45
[7]   Digital mapping of soil carbon in a viticultural region of Southern Brazil [J].
Bonfatti, Benito R. ;
Hartemink, Alfred E. ;
Giasson, Elvio ;
Tornquist, Carlos G. ;
Adhikari, Kabindra .
GEODERMA, 2016, 261 :204-221
[8]   Digital soil mapping of key GlobalSoilMap properties in Northern Karnataka Plateau [J].
Dharumarajan, S. ;
Kalaiselvi, B. ;
Suputhra, Amar ;
Lalitha, M. ;
Hegde, Rajendra ;
Singh, S. K. ;
Lagacherie, Philippe .
GEODERMA REGIONAL, 2020, 20
[9]   The need for digital soil mapping in India [J].
Dharumarajan, S. ;
Hegde, Rajendra ;
Janani, N. ;
Singh, S. K. .
GEODERMA REGIONAL, 2019, 16
[10]   Spatial prediction of major soil properties using Random Forest techniques A case study in semi-arid tropics of South India [J].
Dharumarajan, S. ;
Hegde, Rajendra ;
Singh, S. K. .
GEODERMA REGIONAL, 2017, 10 :154-162