A Spatial-Temporal Attention Approach for Traffic Prediction

被引:121
|
作者
Shi, Xiaoming [1 ]
Qi, Heng [1 ]
Shen, Yanming [1 ,2 ]
Wu, Genze [1 ]
Yin, Baocai [1 ,3 ]
机构
[1] Dalian Univ Technol, Sch Elect Informat & Elect Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equip, Minist Educ, Dalian 116024, Peoples R China
[3] Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Correlation; Neural networks; Predictive models; Roads; Convolution; Semantics; Time series analysis; Attention mechanism; traffic prediction; neural networks; NETWORK; DEMAND; FLOW;
D O I
10.1109/TITS.2020.2983651
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate traffic forecasting is important to enable intelligent transportation systems in a smart city. This problem is challenging due to the complicated spatial, short-term temporal and long-term periodical dependencies. Existing approaches have considered these factors in modeling. Most solutions apply CNN, or its extension Graph Convolution Networks (GCN) to model the spatial correlation. However, the convolution operator may not adequately model the non-Euclidean pair-wise correlations. In this paper, we propose a novel Attention-based Periodic-Temporal neural Network (APTN), an end-to-end solution for traffic foresting that captures spatial, short-term, and long-term periodical dependencies. APTN first uses an encoder attention mechanism to model both the spatial and periodical dependencies. Our model can capture these dependencies more easily because every node attends to all other nodes in the network, which brings regularization effect to the model and avoids overfitting between nodes. Then, a temporal attention is applied to select relevant encoder hidden states across all time steps. We evaluate our proposed model using real world traffic datasets and observe consistent improvements over state-of-the-art baselines.
引用
收藏
页码:4909 / 4918
页数:10
相关论文
共 50 条
  • [31] Attention Based Multi-scale Spatial-temporal Fusion Propagation Graph Network for Traffic Flow Prediction
    Tian, Yuxin
    Zhang, Qiliang
    Li, Xiaomeng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 125 - 136
  • [32] Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting
    Guo, Shengnan
    Lin, Youfang
    Wan, Huaiyu
    Li, Xiucheng
    Cong, Gao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5415 - 5428
  • [33] ESTNet: Embedded Spatial-Temporal Network for Modeling Traffic Flow Dynamics
    Luo, Guiyang
    Zhang, Hui
    Yuan, Quan
    Li, Jinglin
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 19201 - 19212
  • [34] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Zhang, Qingyong
    Chang, Wanfeng
    Li, Changwu
    Yin, Conghui
    Su, Yixin
    Xiao, Peng
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29) : 21827 - 21839
  • [35] Network Traffic Prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Lin, Junda
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [36] Traffic Flow Prediction Based on Spatial-Temporal Attention Convolutional Neural Network
    Xia Y.
    Liu M.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2023, 58 (02): : 340 - 347
  • [37] Model-enhanced spatial-temporal attention networks for traffic density prediction
    Guo, Qi
    Tan, Qi
    Peng, Yue
    Xiao, Long
    Liu, Miao
    Shi, Benyun
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
  • [38] Attention Based Spatial-Temporal GCN with Kalman filter for Traffic Flow Prediction
    Al-Selwi, Hatem Fahd
    Aziz, Azlan Abd.
    Bin Abas, Fazly
    Kayani, Aminuddin
    Noor, Noor Maizura
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2023, 14 (06) : 1299 - 1308
  • [39] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243
  • [40] STAGNN: a spatial-temporal attention graph neural network for network traffic prediction
    Luo, Yonghua
    Ning, Qian
    Chen, Bingcai
    Zhou, Xinzhi
    Huang, Linyu
    INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2024, 30 (04) : 413 - 432