Work statistics for sudden quenches in interacting quantum many-body systems

被引:10
|
作者
Arrais, Eric G. [1 ]
Wisniacki, Diego A. [2 ,3 ]
Roncaglia, Augusto J. [2 ,3 ]
Toscano, Fabricio [1 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
[2] Univ Buenos Aires, FCEyN, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, FCEyN, IFIBA, RA-1428 Buenos Aires, DF, Argentina
关键词
FLUCTUATION THEOREM; LEVEL; 2-BODY; CHAOS; DISTRIBUTIONS; MATRICES; MODEL;
D O I
10.1103/PhysRevE.100.052136
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Work in isolated quantum systems is a random variable and its probability distribution function obeys the celebrated fluctuation theorems of Crooks and Jarzynski. In this study, we provide a simple way to describe the work probability distribution function for sudden quench processes in quantum systems with large Hilbert spaces. This description can be constructed from two elements: the level density of the initial Hamiltonian, and a smoothed strength function that provides information about the influence of the perturbation over the eigenvectors in the quench process, and is especially suited to describe quantum many-body interacting systems. We also show how random models can be used to find such smoothed work probability distribution and apply this approach to different one-dimensional spin-1/2 chain models. Our findings provide an accurate description of the work distribution of such systems in the cases of intermediate and high temperatures in both chaotic and integrable regimes.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Model of level statistics for disordered interacting quantum many-body systems
    Sierant, Piotr
    Zakrzewski, Jakub
    PHYSICAL REVIEW B, 2020, 101 (10)
  • [2] Quantum quenches, thermalization, and many-body localization
    Canovi, Elena
    Rossini, Davide
    Fazio, Rosario
    Santoro, Giuseppe E.
    Silva, Alessandro
    PHYSICAL REVIEW B, 2011, 83 (09):
  • [3] Quantum quenches in the many-body localized phase
    Serbyn, Maksym
    Papic, Z.
    Abanin, D. A.
    PHYSICAL REVIEW B, 2014, 90 (17):
  • [4] Unraveling the excitation spectrum of many-body systems from quantum quenches
    Villa, Louis
    Despres, Julien
    Sanchez-Palencia, Laurent
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [5] Quantum quenches and many-body localization in the thermodynamic limit
    Tang, Baoming
    Iyer, Deepak
    Rigol, Marcos
    PHYSICAL REVIEW B, 2015, 91 (16)
  • [6] Detecting a many-body mobility edge with quantum quenches
    Naldesi, P.
    Ercolessi, E.
    Roscilde, T.
    SCIPOST PHYSICS, 2016, 1 (01):
  • [7] Interacting many-body systems
    FLOW EQUATION APPROACH TO MANY-PARTICLE SYSTEMS, 2006, 217 : 63 - 135
  • [8] Many-body spectral statistics of interacting fermions
    Pascaud, M.
    Montambaux, G.
    Annalen der Physik (Leipzig), 1998, 7 (5-6): : 406 - 416
  • [9] Many-body spectral statistics of interacting fermions
    Pascaud, M
    Montambaux, G
    ANNALEN DER PHYSIK, 1998, 7 (5-6) : 406 - 416
  • [10] Polariton dynamics in strongly interacting quantum many-body systems
    Camacho-Guardian, A.
    Nielsen, K. Knakkergaard
    Pohl, T.
    Bruun, G. M.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):