Influence of rapid thermal processing on carrier concentration in high resistivity silicon

被引:2
作者
Capello, Luciana [1 ]
Bertrand, Isabelle [1 ]
Kononchuk, Oleg [1 ]
机构
[1] Soitec, Chemin Franques, F-38190 Bernin, France
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2017年 / 214卷 / 07期
关键词
donors; rapid thermal annealing; silicon; vacancies; OXYGEN PRECIPITATION; VACANCIES; CRYSTAL;
D O I
10.1002/pssa.201700275
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we report changes in the carrier concentration of high resistivity Si wafers after rapid thermal annealing (RTA) anneals measured by spreading resistance technique. Spreading resistance technique (SRP) profiles clearly show the generation of donor centers with concentrations and depth distributions comparable to those of vacancy-related centers reported in the literature. Changes of carrier concentrations as a function of RTA temperature, duration, ramp down rate, and subsequent annealing in the 800-1000 degrees C range are consistent with the earlier literature data. The influence of annealing ambient is also studied. Annealing in pure Ar atmosphere leads to profiles dominated by in-diffusion of vacancies generated at the surface, while annealing in oxidized ambient results in well-known profiles controlled by out-diffusion of vacancies generated in the wafer bulk. Studies of the wafers with different oxygen content show that the concentration of the generated donors is directly proportional to O-i concentration. (C) 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Carrier concentration dependence of photoacoustic spectra of silicon by a piezoelectric transducer method
    Kuwahata, H
    Muto, N
    Uehara, F
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2000, 39 (5B): : 3169 - 3171
  • [42] The influence of the silicon/silicon oxide space charge region on excess charge carrier kinetics in silicon
    Moreno, E. Martinez
    Kunst, M.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (02): : 352 - 360
  • [43] The geometry of catastrophic fracture during high temperature processing of silicon
    Tanner, B. K.
    Garagorri, J.
    Gorostegui-Colinas, E.
    Elizalde, M. R.
    Bytheway, R.
    McNally, P. J.
    Danilewsky, A. N.
    INTERNATIONAL JOURNAL OF FRACTURE, 2015, 195 (1-2) : 79 - 85
  • [44] The geometry of catastrophic fracture during high temperature processing of silicon
    B. K. Tanner
    J. Garagorri
    E. Gorostegui-Colinas
    M. R. Elizalde
    R. Bytheway
    P. J. McNally
    A. N. Danilewsky
    International Journal of Fracture, 2015, 195 : 79 - 85
  • [45] Effect of rapid thermal process on oxygen precipitates behavior in silicon irradiated by high energy particles
    Chen G.-F.
    Ma X.-W.
    Wu J.-H.
    Ma Q.-Y.
    Xue J.-J.
    Hao Q.-Y.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2011, 45 (05): : 928 - 933+953
  • [46] Temperature Measurement in Rapid Thermal Processing with Focus on the Application to Flash Lamp Annealing
    Reichel, D.
    Skorupa, W.
    Lerch, W.
    Gelpey, J. C.
    CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 2011, 36 (02) : 102 - 128
  • [47] Influence of the Bulk Resistivity on Silicon Heterojunction Solar Cells and Module Reliability
    Augusto, Andre
    Srinivasa, Apoorva
    Bowden, Stuart G.
    SOLAR RRL, 2022, 6 (05)
  • [48] High-speed monolithic silicon photoreceivers on high resistivity and SOI substrates
    Schaub, JD
    Li, R
    Csutak, SM
    Campbell, JC
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2001, 19 (02) : 272 - 278
  • [49] Wet rapid thermal oxidation of silicon with a pyrogenic system
    Lerch, W
    Roters, G
    Munzinger, P
    Mader, R
    Ostermeir, R
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1998, 54 (03): : 153 - 160
  • [50] Polycrystalline silicon films fabricated by rapid thermal annealing
    Lei Zhang
    Honglie Shen
    Jiayi You
    Feng Jiang
    Tianru Wu
    Zhengxia Tang
    Journal of Materials Science: Materials in Electronics, 2012, 23 : 1279 - 1283