Controlled fabrication of InGaAs quantum dots by selective area epitaxy MOCVD growth

被引:22
作者
Elarde, VC [1 ]
Yeoh, TS [1 ]
Rangarajan, R [1 ]
Coleman, JJ [1 ]
机构
[1] Univ Illinois, Dept Elect Engn, Urbana, IL 61801 USA
关键词
area-controlled growth; selective area epitaxy; site-controlled growth; metalorganic chemical vapor deposition; quantum dot;
D O I
10.1016/j.jcrysgro.2004.08.041
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Control over the location, distribution, and size of quantum dots is essential for the engineering of next-generation semiconductor devices employing these remarkable nanostructures. We describe two approaches for achieving some level of this control in the InGaAs/GaAs material system. The first allows a degree of spatial selectivity by using strain differences in patterned InGaAs thin films as preferential sites for quantum dot growth. This method results in patterns of dots similar to those grown by self-assembly on an unpatterned InGaAs layer. The second method employs more conventional selective area epitaxy using a thin silicon dioxide mask patterned by electron beam lithography. This method allows control over the location of each quantum dot and variation of dot size through manipulation of the mask pattern. We present data on arrays of highly uniform InGaAs quantum dots fabricated in this manner. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 153
页数:6
相关论文
共 26 条
[1]   Selective control of self-organized In0.5Ga0.5As/GaAs quantum dot properties:: Quantum dot intermixing [J].
Bhattacharyya, D ;
Helmy, AS ;
Bryce, AC ;
Avrutin, EA ;
Marsh, JH .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (08) :4619-4622
[2]   InGaAs-GaAs quantum-dot lasers [J].
Bimberg, D ;
Kirstaedter, N ;
Ledentsov, NN ;
Alferov, ZI ;
Kopev, PS ;
Ustinov, VM .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (02) :196-205
[3]   STRAINED-LAYER INGAAS GAAS ALGAAS BURIED-HETEROSTRUCTURE QUANTUM-WELL LASERS BY 3-STEP SELECTIVE-AREA METALORGANIC CHEMICAL-VAPOR-DEPOSITION [J].
COCKERILL, TM ;
FORBES, DV ;
DANTZIG, JA ;
COLEMAN, JJ .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1994, 30 (02) :441-445
[4]  
COCKERILL TM, 1993, IEEE PHOTONIC TECH L, V4, P448
[5]  
COLEMAN JJ, 1997, P IEEE, V82, P1715
[6]   Structural and electrooptical characteristics of quantum dots emitting at 1.3 μm on gallium arsenide [J].
Fiore, A ;
Oesterle, U ;
Stanley, RP ;
Houdré, R ;
Lelarge, F ;
Ilegems, M ;
Borri, P ;
Langbein, W ;
Birkedal, D ;
Hvam, JM ;
Cantoni, M ;
Bobard, F .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2001, 37 (08) :1050-1058
[7]   Double-island single-electron devices - A useful unit device for single-electron logic LSI's [J].
Fujiwara, A ;
Takahashi, Y ;
Yamazaki, K ;
Namatsu, H ;
Nagase, M ;
Kurihara, K ;
Murase, K .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1999, 46 (05) :954-959
[8]   Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition [J].
Heinrichsdorff, F ;
Mao, MH ;
Kirstaedter, N ;
Krost, A ;
Bimberg, D ;
Kosogov, AO ;
Werner, P .
APPLIED PHYSICS LETTERS, 1997, 71 (01) :22-24
[9]   1.3 μm room-temperature GaAs-based quantum-dot laser [J].
Huffaker, DL ;
Park, G ;
Zou, Z ;
Shchekin, OB ;
Deppe, DG .
APPLIED PHYSICS LETTERS, 1998, 73 (18) :2564-2566
[10]   Continuous-wave low-threshold performance of 1.3-μm InGaAs-GaAs quantum-dot lasers [J].
Huffaker, DL ;
Park, G ;
Zou, ZZ ;
Shchekin, OB ;
Deppe, DG .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000, 6 (03) :452-461