On sums of a prime and four prime squares in short intervals

被引:4
作者
Meng, XM [1 ]
机构
[1] Shandong Finance Inst, Dept Culture & Sci, Jinan 250014, Shandong, Peoples R China
基金
美国国家科学基金会;
关键词
prime; circle method; additive problem;
D O I
10.1023/B:AMHU.0000049279.34821.25
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every sufficiently large odd integer Nnot equivalent to1 (mod 3), the equation=p+p(1)(2)+P-2(2)+(P3P42)-P-2, \p-(N)/(5\) less than or equal to root(N)/U-5, \pi -root(N)/(5\)less than or equal to U, i = 1, 2, 3, 4 has solutions, where U = N5/11+epsilon, p and p(i) are primes. Subject to the generalized Riemann hypothesis, U can be chosen as U = N2/5+epsilon.
引用
收藏
页码:261 / 283
页数:23
相关论文
共 11 条
  • [1] Davenport H., 1980, MULTIPLICATIVE NUMBE
  • [2] HUA LK, 1957, ADDITIVE THEORY PRIM
  • [3] HUA LK, 1938, Q J MATH OXFORD SER, V9, P68
  • [4] Liu JY, 1996, ACTA ARITH, V77, P369
  • [5] The exceptional set in the four prime squares problem
    Liu, JY
    Liu, MC
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2000, 44 (02) : 272 - 293
  • [6] LIU JY, 1998, SCI CHIN, V28, P229
  • [7] SMALL PRIME SOLUTIONS OF SOME ADDITIVE EQUATIONS
    LIU, MC
    TSANG, KM
    [J]. MONATSHEFTE FUR MATHEMATIK, 1991, 111 (02): : 147 - 169
  • [8] PAN CD, 1991, FUNDAMENTAL NUMBER T
  • [9] Prachar K., 1957, Primzahlverteilung
  • [10] Titchmarsh E.C., 1986, THEORY RIEMANN ZETA