Fault Detection of a Flow Control Valve Using Vibration Analysis and Support Vector Machine

被引:17
|
作者
Venkata, Santhosh Krishnan [1 ]
Rao, Swetha [2 ]
机构
[1] Manipal Acad Higher Educ, Ctr Cyber Phys Syst, Manipal Inst Technol, Dept Instrumentat & Control, Manipal 576104, Karnataka, India
[2] Univ Bremen, Inst Automat, D-28359 Bremen, Germany
关键词
accelerometer; control valve; fault detection; support vector machine; vibration analysis; SYSTEM; DIAGNOSIS;
D O I
10.3390/electronics8101062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A control valve plays a very significant role in the stable and efficient working of a control loop for any process. In a fluid flow process, the probability of failure of a control valve may increase for many reasons pertaining to a flow process such as high pressures at the inlet, different properties of the liquid flowing through the pipe, mechanical issue related to a control valve, ageing, etc. A method to detect faults in the valve can lead to better stability of the control loop. In the proposed work, a technique is developed to determine the fault in a pneumatic control valve by analyzing the vibration data at the outlet of the valve. The fault diagnosis of the valve is carried out by analyzing the change in vibration of the pipe due to the change in flow pattern induced by the control valve. The faults being considered are inflow and insufficient supply pressure faults. Vibration data obtained is processed using a signal processing technique like amplification, Fourier transform, etc. The support vector machine (SVM) algorithm is used to classify the vibration data into two classes, one normal and the other faulty. The designed algorithm is trained to identify faults and subjected to test with a practical setup; test results show an accuracy of 97%.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Fault mode detection of a hybrid electric vehicle by using support vector machine
    Liu, Fanshuo
    Liu, Bolan
    Zhang, Junwei
    Wan, Peng
    Li, Ben
    ENERGY REPORTS, 2023, 9 : 137 - 148
  • [2] Stiction detection in control valves using a support vector machine with a generalized statistical variable
    Yazdi, Yaser Arbabi
    Shandiz, Heydar Toossian
    Narm, Hosein Gholizadeh
    ISA TRANSACTIONS, 2022, 126 : 407 - 414
  • [3] Vibration Gear Fault Diagnostics Technique Using Wavelet Support Vector Machine
    Widodo, A.
    Widowati, D. P. Dewi
    Satrijo, D.
    Haryanto, I.
    ADVANCES IN MECHANICAL AND MANUFACTURING ENGINEERING, 2014, 564 : 182 - +
  • [4] Automated valve fault detection based on acoustic emission parameters and support vector machine
    Ali, Salah M.
    Hui, K. H.
    Hee, L. M.
    Leong, M. Salman
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (01) : 491 - 498
  • [5] A support vector machine framework for fault detection in molecular pump
    Yuan, X. L.
    Kai, J.
    Chen, Y.
    Zuo, G. Z.
    Zhuang, H. D.
    Li, J. H.
    Hu, J. S.
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2023, 60 (01) : 72 - 82
  • [6] An Online Incremental Support Vector Machine for Fault Diagnosis using Vibration Signature Analysis
    Gul, Sufi Tabassum
    Imran, Munhal
    Khan, Abdul Qayyum
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2018, : 1467 - 1472
  • [7] Wavelet transform and least square support vector machine for mechanical fault detection of an alternator using vibration signal
    Abad, Mohammad Reza Asadi Asad
    Moosavian, Ashkan
    Khazaee, Meghdad
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2016, 35 (01) : 52 - 63
  • [8] A method based on support vector machine and vibration analysis for fault detection in bevel gears (Case study: differential)
    Ebrahimi, E.
    INSIGHT, 2019, 61 (05) : 279 - 286
  • [9] Fault Detection and Diagnosis in Electric Vehicle Systems using IoT and Machine Learning: A Support Vector Machine Approach
    Sabeena, Jasmine
    Patil, Nitin Sudhakar
    Sharma, Priyanka
    Kumar, T. Sathish
    Ushkewar, Sandeep
    Shah, Devang Kumar Umakant
    Shrivastava, Anurag
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 990 - 999
  • [10] Support vector machine based fault detection and diagnosis for HVAC systems
    Li J.
    Guo Y.
    Wall J.
    West S.
    International Journal of Intelligent Systems Technologies and Applications, 2019, 18 (1-2) : 204 - 222