The moduli space of the modular group in complex hyperbolic geometry

被引:17
作者
Falbel, E
Parker, JR
机构
[1] Univ Paris 06, Inst Math, F-75252 Paris, France
[2] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
关键词
D O I
10.1007/s00222-002-0267-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the space of discrete, faithful, type-preserving representations of the modular group into the isometry group of complex hyperbolic 2-space up to conjugacy. This is the first Fuchsian group for which the entire complex hyperbolic deformation space has been constructed. We also show how the C-spheres of Falbel-Zocca are related to the R-spheres (hybrid spheres) of Schwartz.
引用
收藏
页码:57 / 88
页数:32
相关论文
共 12 条
[1]   Flexibility of ideal triangle groups in complex hyperbolic geometry [J].
Falbel, E ;
Koseleff, PV .
TOPOLOGY, 2000, 39 (06) :1209-1223
[2]  
Falbel E, 2002, MATH RES LETT, V9, P379
[3]   Rigidity and flexibility of triangle groups in complex hyperbolic geometry [J].
Falbel, E ;
Koseleff, PV .
TOPOLOGY, 2002, 41 (04) :767-786
[4]  
Falbel E, 1999, J REINE ANGEW MATH, V516, P133
[5]  
Goldman W.M., 1999, OXFORD MATH MONOGRAP
[6]  
GOLDMAN WM, 1992, J REINE ANGEW MATH, V425, P71
[7]   Representations of free Fuchsian groups in complex hyperbolic space [J].
Gusevskii, N ;
Parker, JR .
TOPOLOGY, 2000, 39 (01) :33-60
[8]  
GUSEVSKII N, COMPLEX HYPERBOLIC Q
[9]  
Jacobowitz H., 1990, Mathematical Surveys and Monographs, V32
[10]  
KONTSEVICH M., 1994, P INT C MATH ZUR 199, V1, P120