Minimal variational surfaces and quality meshes

被引:1
|
作者
Borouchaki, H
Lafon, P
Villon, P
机构
[1] Univ Technol Troyes, LASMIS, GSM, F-10010 Troyes, France
[2] Univ Technol Compiegne, GSM, F-60205 Compiegne, France
关键词
D O I
10.1016/S0764-4442(00)01608-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many physical phenomena in science and engineering can be modeled by partial differential equations (PDEs) and solved using Finite Element Method (FEM). Such a method uses as computational spatial support a mesh of the domain where the equations are formulated. The mesh quality is a key-point for the accuracy of the numerical solution. This paper describes a methodology to construct a quality mesh of the domain from a given discretization of its boundary. We show that the size map related to such a mesh constitutes a minimal variational surface supported by a given contour This surface can be constructed, from its boundary using Finite Element Method or by the resolution of a simple discrete optimization problem. The quality mesh of the domain is then a mesh conforming to the size map given by this surface. A numerical example is given to demonstrate the method. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:479 / 484
页数:6
相关论文
共 50 条
  • [1] Infinitesimally flexible meshes and discrete minimal surfaces
    Johannes Wallner
    Helmut Pottmann
    Monatshefte für Mathematik, 2008, 153 : 347 - 365
  • [2] Infinitesimally flexible meshes and discrete minimal surfaces
    Wallner, Johannes
    Pottmann, Helmut
    MONATSHEFTE FUR MATHEMATIK, 2008, 153 (04): : 347 - 365
  • [3] Variational convergence of discrete minimal surfaces
    Henrik Schumacher
    Max Wardetzky
    Numerische Mathematik, 2019, 141 : 173 - 213
  • [4] Minimal surfaces: variational theory and applications
    Marques, Fernando Coda
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL I, 2014, : 283 - 310
  • [5] Variational convergence of discrete minimal surfaces
    Schumacher, Henrik
    Wardetzky, Max
    NUMERISCHE MATHEMATIK, 2019, 141 (01) : 173 - 213
  • [7] NEW VARIATIONAL FORMULATIONS FOR MINIMAL-SURFACES
    TABARROK, B
    TONG, LY
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 35 (03) : 491 - 502
  • [8] Constructing discrete minimal surfaces with quadrilateral meshes from described boundary
    Xu G.
    Zhu Y.-G.
    Li X.
    Xu J.-L.
    Wang G.-Z.
    Hui K.-C.
    Ruan Jian Xue Bao/Journal of Software, 2016, 27 (10): : 2499 - 2508
  • [9] Variational normal meshes
    Friedel, I
    Schröder, P
    Khodakovsky, A
    ACM TRANSACTIONS ON GRAPHICS, 2004, 23 (04): : 1061 - 1073
  • [10] A VARIATIONAL APPROACH TO THE EXISTENCE OF COMPLETE EMBEDDED MINIMAL-SURFACES
    HOFFMAN, D
    MEEKS, WH
    DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) : 877 - 893