The universality class of 3D site-diluted and bond-diluted Ising systems

被引:67
作者
Hasenbusch, Martin [1 ]
Toldin, Francesco Parisen
Pelissetto, Andrea
Vicari, Ettore
机构
[1] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[2] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
[3] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[4] Ist Nazl Fis Nucl, I-56126 Pisa, Italy
[5] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[6] Ist Nazl Fis Nucl, I-00185 Rome, Italy
关键词
classical Monte Carlo simulations; classical phase transitions ( theory); critical exponents and amplitudes ( theory); disordered systems ( theory);
D O I
10.1088/1742-5468/2007/02/P02016
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present a finite-size scaling analysis of high-statistics Monte Carlo simulations of the three-dimensional randomly site-diluted and bond-diluted Ising model. The critical behaviour of these systems is affected by slowly decaying scaling corrections which make the accurate determination of their universal asymptotic behaviour quite hard, requiring an effective control of the scaling corrections. For this purpose we exploit improved Hamiltonians, for which the leading scaling corrections are suppressed for any thermodynamic quantity, and improved observables, for which the leading scaling corrections are suppressed for any model belonging to the same universality class. The results of the finite-size scaling analysis provide strong numerical evidence that phase transitions in three-dimensional randomly site-diluted and bond-diluted Ising models belong to the same randomly dilute Ising universality class. We obtain accurate estimates of the critical exponents nu = 0.683(2), eta = 0.036(1), alpha = - 0.049(6), gamma = 1.341(4), beta = 0.354(1), delta = 4.792(6), and of the leading and next-to-leading correction-to-scaling exponents, omega = 0.33(3) and omega(2) = 0.82(8).
引用
收藏
页数:43
相关论文
共 41 条
[1]   NON-LINEAR SCALING FIELDS AND CORRECTIONS TO SCALING NEAR CRITICALITY [J].
AHARONY, A ;
FISHER, ME .
PHYSICAL REVIEW B, 1983, 27 (07) :4394-4400
[2]  
Aharony A., 1976, Phase Transitions and Critical Phenomena, V6, P357
[3]   Summability of the perturbative expansion for a zero-dimensional disordered spin model [J].
Alvarez, G ;
Martín-Mayor, V ;
Ruiz-Lorenzo, JJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (05) :841-850
[4]  
[Anonymous], PHASE TRANSITIONS CR
[5]  
[Anonymous], USP FIZ NAUK
[6]   The four-dimensional site-diluted Ising model: A finite-size scaling study [J].
Ballesteros, HG ;
Fernandez, LA ;
Martin-Mayor, V ;
Sudupe, AM ;
Parisi, G ;
Ruiz-Lorenzo, JJ .
NUCLEAR PHYSICS B, 1998, 512 (03) :681-701
[7]   Critical exponents of the three-dimensional diluted Ising model [J].
Ballesteros, HG ;
Fernandez, LA ;
Martin-Mayor, V ;
Sudupe, AM ;
Parisi, G ;
Ruiz-Lorenzo, JJ .
PHYSICAL REVIEW B, 1998, 58 (05) :2740-2747
[8]  
Belanger DP, 2000, BRAZ J PHYS, V30, P682, DOI 10.1590/S0103-97332000000400009
[9]   Bond dilution in the 3D ising model: a Monte Carlo study [J].
Berche, PE ;
Chatelain, C ;
Berche, B ;
Janke, W .
EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (03) :463-474
[10]   SUMMABILITY OF PERTURBATION EXPANSIONS IN DISORDERED-SYSTEMS - RESULTS FOR A TOY MODEL [J].
BRAY, AJ ;
MCCARTHY, T ;
MOORE, MA ;
REGER, JD ;
YOUNG, AP .
PHYSICAL REVIEW B, 1987, 36 (04) :2212-2219