Existence and non-existence of global solutions of the Cauchy problem for higher order semilinear pseudo-hyperbolic equations

被引:26
作者
Aliev, Akbar B. [1 ]
Lichaei, Bijan H. [1 ]
机构
[1] Azerbaijan Tech Univ, Inst Math & Mech, NAS Azerbaijan, AZ-1141 Baku, Azerbaijan
关键词
Cauchy problem; Pseudo-hyperbolic; Semilinear; Existence; Non-existence; Global solution; DISSIPATIVE WAVE-EQUATIONS; BLOW-UP; ASYMPTOTIC-BEHAVIOR; DECAY;
D O I
10.1016/j.na.2009.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for a higher order pseudo-hyperbolic equation. Using the L-p -> L-q type estimation for the corresponding linear problem, the existence and nonexistence criteria of global solutions are found. The existence and uniqueness of smooth global solutions are also investigated. We also establish the behavior of solutions and their derivatives as t -> +infinity. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3275 / 3288
页数:14
相关论文
共 30 条
[1]  
ALIEV AB, 1978, DOKL AKAD NAUK SSSR+, V240, P249
[2]  
Aliev AB, 2009, DIFF EQUAT, V45, P1
[3]  
[Anonymous], 1971, PRINCETON MATH SER
[4]  
Besov O. V., 1978, Integral Representations of Functions and Imbedding Theorems
[5]  
Demidenko G. V, 1998, URAVNENIYA SISTEMY R
[6]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[7]  
Gabov S. A., 1990, Linear problems in the theory of nonstationary internal waves
[8]   Blow-up of solutions of some nonlinear wave equations [J].
Galakhov, E. I. .
DIFFERENTIAL EQUATIONS, 2009, 45 (01) :59-67
[9]  
Gunter, 1961, Pacific Journal of Mathematics, V11, P679, DOI [DOI 10.2140/PJM.1961.11.679, 10.2140/pjm.1961.11.679]
[10]   Damped wave equation with a critical nonlinearity [J].
Hayashi, N ;
Kaikina, EI ;
Naumkin, PI .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) :1165-1185