Asynchronous iterations of HSS method for non-Hermitian linear systems

被引:1
作者
Gbikpi-Benissan, Guillaume [1 ,2 ]
Zou, Qinmeng [1 ,3 ]
Magoules, Frederic [1 ,4 ]
机构
[1] Univ Paris Saclay, Cent Supelec, 3 Rue Joliot Curie, F-91190 Gif Sur Yvette, France
[2] RUDN Univ, Peoples Friendship Univ Russia, Engn Acad, Moscow, Russia
[3] Beijing Univ Posts & Telecommun, Sch Sci, Beijing, Peoples R China
[4] Univ Pecs, Fac Engn & Informat Technol, Vasvari Pal Utca 4, H-7622 Pecs, Hungary
关键词
Asynchronous iterations; alternating iterations; Hermitian and skew-Hermitian splitting; non-Hermitian problems; parallel computing; OPTIMIZED SCHWARZ; SPLITTING METHODS; CONVERGENCE; COMMUNICATION; ALGORITHMS; MPI;
D O I
10.1080/00207160.2021.1952572
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general asynchronous alternating iterative model is designed, for which convergence is theoretically ensured both under classical spectral radius bound and, then, for a classical class of matrix splittings for H-matrices. The computational model can be thought of as a two-stage alternating iterative method, which well suits to the well-known Hermitian and skew-Hermitian splitting (HSS) approach, with the particularity here of considering only one inner iteration. Experimental parallel performance comparison is conducted between the generalized minimal residual (GMRES) algorithm, the standard HSS and our asynchronous variant, on both real and complex non-Hermitian linear systems, respectively, arising from convection-diffusion and structural dynamics problems. A significant gain on execution time is observed in both cases.
引用
收藏
页码:1105 / 1123
页数:19
相关论文
共 46 条
[11]   Block preconditioning of real-valued iterative algorithms for complex linear systems [J].
Benzi, Michele ;
Bertaccini, Daniele .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (03) :598-618
[12]   An efficient solver for the incompressible Navier-Stokes equations in rotation form [J].
Benzi, Michele ;
Liu, Jia .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (05) :1959-1981
[14]  
Bertaccini D, 2005, NUMER MATH, V99, P441, DOI [10.1007/s00211-004-0574-1, 10.1007/s00211 -004-0574-1]
[15]  
Bertsekas D., 1989, PARALLEL DISTRIBUTED
[16]   DISTRIBUTED ASYNCHRONOUS COMPUTATION OF FIXED-POINTS [J].
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1983, 27 (01) :107-120
[17]  
Chazan D., 1969, LINEAR ALGEBR APPL, V2, P199, DOI DOI 10.1016/0024-3795(69)90028-7
[18]   ALTERNATING METHODS FOR SETS OF LINEAR EQUATIONS [J].
CONRAD, V ;
WALLACH, Y .
NUMERISCHE MATHEMATIK, 1979, 32 (01) :105-108
[19]   MPI for Python']Python [J].
Dalcín, L ;
Paz, R ;
Storti, M .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2005, 65 (09) :1108-1115
[20]   ON THE NUMERICAL INTEGRATION OF D2U-DX2+D2U-DY2=DU-D+ IMPLICIT METHODS [J].
DOUGLAS, J .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1955, 3 (01) :42-65