Effects of Type 1 Diabetes Risk Alleles on Immune Cell Gene Expression

被引:15
作者
Ram, Ramesh [1 ,2 ]
Morahan, Grant [1 ,2 ]
机构
[1] Harry Perkins Inst Med Res, Ctr Diabet Res, Nedlands, WA 6009, Australia
[2] Univ Western Australia, Ctr Med Res, Nedlands, WA 6009, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
type; 1; diabetes; eQTLs; B-cells; T-cells; dendritic cells; GENOME-WIDE ASSOCIATION; SUSCEPTIBILITY LOCUS; POPULATION-STRUCTURE; VARIANTS; TRANSCRIPTOME; IDENTIFICATION; PATHOGENICITY; METAANALYSIS; INTEGRATION; ENRICHMENT;
D O I
10.3390/genes8060167
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genetic studies have identified 61 variants associated with the risk of developing Type 1 Diabetes (T1D). The functions of most of the non-HLA (Human Leukocyte Antigen) genetic variants remain unknown. We found that only 16 of these risk variants could potentially be linked to a protein-coding change. Therefore, we investigated whether these variants affected susceptibility by regulating changes in gene expression. To do so, we examined whole transcriptome profiles of 600 samples from the Type 1 Diabetes Genetics Consortium (T1DGC). These comprised four different immune cell types (Epstein-Barr virus (EBV)-transformed B cells, either basal or after stimulation; and cluster of differentiation (CD)4+ and CD8+ T cells). Many of the T1D-associated risk variants regulated expression of either neighboring (cis-) or distant (trans-) genes. In brief, 24 of the non-HLA T1D variants affected the expression of 31 nearby genes (cis) while 25 affected 38 distant genes (trans). The effects were highly significant (False Discovery Rate p < 0.001). In addition, we searched in public databases for expression effects of T1D single nucleotide polymorphisms (SNPs) in other immune cell types such as CD14+ monocytes, lipopolysaccharide (LPS) stimulated monocytes, and CD19+ B cells. In this paper, we review the (expression quantitative trait loci (eQTLs) associated with each of the 60 T1D variants and provide a summary of the genes impacted by T1D risk alleles in various immune cells. We then review the methodological steps involved in analyzing the function of genome wide association studies (GWAS)-identified variants, with emphasis on those affecting gene expression. We also discuss recent advancements in the methodologies and their advantages. We conclude by suggesting future study designs that will aid in the study of T1D risk variants.
引用
收藏
页数:14
相关论文
共 83 条
[1]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[2]   Fast model-based estimation of ancestry in unrelated individuals [J].
Alexander, David H. ;
Novembre, John ;
Lange, Kenneth .
GENOME RESEARCH, 2009, 19 (09) :1655-1664
[3]   The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans [J].
Ardlie, Kristin G. ;
DeLuca, David S. ;
Segre, Ayellet V. ;
Sullivan, Timothy J. ;
Young, Taylor R. ;
Gelfand, Ellen T. ;
Trowbridge, Casandra A. ;
Maller, Julian B. ;
Tukiainen, Taru ;
Lek, Monkol ;
Ward, Lucas D. ;
Kheradpour, Pouya ;
Iriarte, Benjamin ;
Meng, Yan ;
Palmer, Cameron D. ;
Esko, Tonu ;
Winckler, Wendy ;
Hirschhorn, Joel N. ;
Kellis, Manolis ;
MacArthur, Daniel G. ;
Getz, Gad ;
Shabalin, Andrey A. ;
Li, Gen ;
Zhou, Yi-Hui ;
Nobel, Andrew B. ;
Rusyn, Ivan ;
Wright, Fred A. ;
Lappalainen, Tuuli ;
Ferreira, Pedro G. ;
Ongen, Halit ;
Rivas, Manuel A. ;
Battle, Alexis ;
Mostafavi, Sara ;
Monlong, Jean ;
Sammeth, Michael ;
Mele, Marta ;
Reverter, Ferran ;
Goldmann, Jakob M. ;
Koller, Daphne ;
Guigo, Roderic ;
McCarthy, Mark I. ;
Dermitzakis, Emmanouil T. ;
Gamazon, Eric R. ;
Im, Hae Kyung ;
Konkashbaev, Anuar ;
Nicolae, Dan L. ;
Cox, Nancy J. ;
Flutre, Timothee ;
Wen, Xiaoquan ;
Stephens, Matthew .
SCIENCE, 2015, 348 (6235) :648-660
[4]   Re-Annotator: Annotation Pipeline for Microarray Probe Sequences [J].
Arloth, Janine ;
Bader, Daniel M. ;
Roeh, Simone ;
Altmann, Andre .
PLOS ONE, 2015, 10 (10)
[5]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[6]   Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes [J].
Barrett, Jeffrey C. ;
Clayton, David G. ;
Concannon, Patrick ;
Akolkar, Beena ;
Cooper, Jason D. ;
Erlich, Henry A. ;
Julier, Cecile ;
Morahan, Grant ;
Nerup, Jorn ;
Nierras, Concepcion ;
Plagnol, Vincent ;
Pociot, Flemming ;
Schuilenburg, Helen ;
Smyth, Deborah J. ;
Stevens, Helen ;
Todd, John A. ;
Walker, Neil M. ;
Rich, Stephen S. .
NATURE GENETICS, 2009, 41 (06) :703-707
[7]   Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals [J].
Battle, Alexis ;
Mostafavi, Sara ;
Zhu, Xiaowei ;
Potash, James B. ;
Weissman, Myrna M. ;
McCormick, Courtney ;
Haudenschild, Christian D. ;
Beckman, Kenneth B. ;
Shi, Jianxin ;
Mei, Rui ;
Urban, Alexander E. ;
Montgomery, Stephen B. ;
Levinson, Douglas F. ;
Koller, Daphne .
GENOME RESEARCH, 2014, 24 (01) :14-24
[8]   PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions [J].
Bendl, Jaroslav ;
Musil, Milos ;
Stourac, Jan ;
Zendulka, Jaroslav ;
Damborsky, Jiri ;
Brezovsky, Jan .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (05)
[9]   PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations [J].
Bendl, Jaroslav ;
Stourac, Jan ;
Salanda, Ondrej ;
Pavelka, Antonin ;
Wieben, Eric D. ;
Zendulka, Jaroslav ;
Brezovsky, Jan ;
Damborsky, Jiri .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (01)
[10]  
Benjamini Y, 2001, ANN STAT, V29, P1165