Plasma Electrolytic Polishing-An Ecological Way for Increased Corrosion Resistance in Austenitic Stainless Steels

被引:13
作者
Zatkalikova, Viera [1 ]
Podhorsky, Stefan [2 ]
Strbak, Milan [1 ,3 ]
Liptakova, Tatiana [1 ]
Markovicova, Lenka [1 ]
Kucharikova, Lenka [1 ]
机构
[1] Univ Zilina, Fac Mech Engn, Dept Mat Engn, Univ 8215-1, Zilina 01026, Slovakia
[2] Slovak Univ Technol Bratislava, Fac Mat Sci & Technol, Inst Prod Technol, Jana Bottu C 2781-25, Trnava 91724, Slovakia
[3] Univ Zilina, Res Ctr UNIZA, Univ 8215-1, Zilina 01026, Slovakia
关键词
austenitic stainless steel; plasma electrolytic polishing; corrosion resistance; electrochemical impedance spectroscopy; potentiodynamic polarization; IMPLANTS; ALLOYS;
D O I
10.3390/ma15124223
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Plasma electrolytic polishing (PEP) is an environment-friendly alternative to the conventional electrochemical polishing (EP), giving optimal surface properties and improved corrosion resistance with minimum energy and time consumption, which leads to both economic and environmental benefits. This paper is focused on the corrosion behavior of PEP treated AISI 316L stainless steel widely used as a biomaterial. Corrosion resistance of plasma electrolytic polished surfaces without/with chemical pretreatment (acid cleaning) is evaluated and compared with original non-treated (as received) surfaces by three independent test methods: electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PP), and exposure immersion test. All corrosion tests are carried out in the 0.9 wt.% NaCl solution at a temperature of 37 +/- 0.5 degrees C to simulate the internal environment of a human body. The quality of tested surfaces is also characterized by optical microscopy and by the surface roughness parameters. The results obtained indicated high corrosion resistance of PEP treated surfaces also without chemical pretreatment, which increases the ecological benefits of PEP technology.
引用
收藏
页数:13
相关论文
共 47 条
[1]   A Brief Recap of Microbial Adhesion and Biofilms [J].
Achinas, Spyridon ;
Charalampogiannis, Nikolaos ;
Euverink, Gerrit Jan Willem .
APPLIED SCIENCES-BASEL, 2019, 9 (14)
[2]  
Bazaka O, 2021, CHEM INORGANIC BIOMA, DOI [10.1039/9781788019828-00001, DOI 10.1039/9781788019828-00001]
[3]   Impact of electrolyte concentration on surface gloss in electropolished stainless steel [J].
Beamud, E. M. ;
Nunez, P. J. ;
Garcia-Plaza, E. ;
Rodriguez, D. ;
Gonzalez, A. ;
Garcia, J. .
MANUFACTURING ENGINEERING SOCIETY INTERNATIONAL CONFERENCE 2017 (MESIC 2017), 2017, 13 :663-670
[4]   Mechanism and technological opportunity of plasma electrolytic polishing of metals and alloys surfaces [J].
Belkin, P. N. ;
Kusmanov, S. A. ;
Parfenov, E., V .
APPLIED SURFACE SCIENCE ADVANCES, 2020, 1
[5]   Study of Localized Corrosion of AISI 430 and AISI 304 Batches Having Different Roughness [J].
Bellezze, Tiziano ;
Vicere, Annamaria ;
Giuliani, Giampaolo ;
Sorrentino, Emanuele ;
Roventi, Gabriella .
METALS, 2018, 8 (04)
[6]   Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steel UNS S82441 [J].
Brytan, Z. ;
Niagaj, J. ;
Reimann, L. .
APPLIED SURFACE SCIENCE, 2016, 388 :160-168
[7]  
Calderón-Hernández José Wilmar, 2019, REM, Int. Eng. J., V72, P97, DOI 10.1590/0370-44672017720018
[8]   The effect of mechanical polishing and finishing on the corrosion resistance of AISI 304 stainless steel [J].
Carolina de Oliveira, A. ;
Lopes de Oliveira, M. C. ;
Rios, C. T. ;
Antunes, R. A. .
CORROSION ENGINEERING SCIENCE AND TECHNOLOGY, 2016, 51 (06) :416-428
[9]   Metallic implant biomaterials [J].
Chen, Qizhi ;
Thouas, George A. .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2015, 87 :1-57
[10]   Improving the technology of electrolytic-plasma treatment of austenitic stainless steel [J].
Chirkunova, N. V. ;
Volenko, A. P. ;
Mulyukov, R. R. ;
Shlom, M. V. .
LETTERS ON MATERIALS-PIS MA O MATERIALAKH, 2013, 3 (04) :309-311