Complete Duality for Quasiconvex and Convex Set-Valued Functions

被引:3
作者
Drapeau, Samuel [1 ,2 ]
Hamel, Andreas H. [3 ]
Kupper, Michael [4 ]
机构
[1] Shanghai Jiao Tong Univ, SAIF CAFR, 211 West Huaihai Rd, Shanghai 200030, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Math, 211 West Huaihai Rd, Shanghai 200030, Peoples R China
[3] Free Univ Bolzano, Piazzetta Univ 1, I-39031 Brunico, Italy
[4] Univ Konstanz, Univ Str 10, D-78464 Constance, Germany
关键词
Set-valued functions; Quasiconvexity; Dual representation; Increasing functions; Fenchel-Moreau;
D O I
10.1007/s11228-015-0332-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a unique dual representation of set-valued lower semi-continuous quasiconvex and convex functions. The results are based on a duality result for increasing set-valued functions.
引用
收藏
页码:253 / 275
页数:23
相关论文
共 15 条
[1]   A characterization of quasiconvex vector-valued functions [J].
Benoist, J ;
Borwein, JM ;
Popovici, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) :1109-1113
[2]   Characterizations of convex and quasiconvex set-valued maps [J].
Benoist, J ;
Popovici, N .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2003, 57 (03) :427-435
[3]   Uncertainty averse preferences [J].
Cerreia-Vioglio, S. ;
Maccheroni, F. ;
Marinacci, M. ;
Montrucchio, L. .
JOURNAL OF ECONOMIC THEORY, 2011, 146 (04) :1275-1330
[4]   Complete Monotone Quasiconcave Duality [J].
Cerreia-Vioglio, Simone ;
Maccheroni, Fabio ;
Marinacci, Massimo ;
Montrucchio, Luigi .
MATHEMATICS OF OPERATIONS RESEARCH, 2011, 36 (02) :321-339
[5]   Risk Preferences and Their Robust Representation [J].
Drapeau, Samuel ;
Kupper, Michael .
MATHEMATICS OF OPERATIONS RESEARCH, 2013, 38 (01) :28-62
[6]   Lagrange Duality in Set Optimization [J].
Hamel, Andreas H. ;
Loehne, Andreas .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 161 (02) :368-397
[7]   Set-valued risk measures for conical market models [J].
Hamel, Andreas H. ;
Heyde, Frank ;
Rudloff, Birgit .
MATHEMATICS AND FINANCIAL ECONOMICS, 2011, 5 (01) :1-28
[8]   Duality for Set-Valued Measures of Risk [J].
Hamel, Andreas H. ;
Heyde, Frank .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2010, 1 (01) :66-95
[9]   A Duality Theory for Set-Valued Functions I: Fenchel Conjugation Theory [J].
Hamel, Andreas H. .
SET-VALUED AND VARIATIONAL ANALYSIS, 2009, 17 (02) :153-182
[10]   Vector-valued coherent risk measures [J].
Jouini, E ;
Meddeb, M ;
Touzi, N .
FINANCE AND STOCHASTICS, 2004, 8 (04) :531-552