Computing homotopic shortest paths efficiently

被引:0
作者
Efrat, A [1 ]
Kobourov, SG
Lubiw, A
机构
[1] Univ Arizona, Dept Comp Sci, Tucson, AZ 85721 USA
[2] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
来源
ALGORITHMS-ESA 2002, PROCEEDINGS | 2002年 / 2461卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We give algorithms to find shortest paths homotopic to given disjoint paths that wind amongst n point obstacles in the plane. Our deterministic algorithm runs in time O(k log n+nrootn), and the randomized version in time O(k log n + n(log n)(1+epsilon)), where k is the input plus output sizes of the paths.
引用
收藏
页码:411 / 423
页数:13
相关论文
共 16 条
[1]  
[Anonymous], 1989, The Design and Analysis of Spatial Data Structures
[2]  
[Anonymous], 2000, Geometry, Spinors and Applications
[3]   TRIANGULATING DISJOINT JORDAN CHAINS [J].
Bar-Yehuda, Reuven ;
Chazelle, Bernard .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1994, 4 (04) :475-481
[4]  
CABELLO S, 2002, 18 ANN S COMP GEOM, P160
[5]   AN ALGORITHM FOR SEGMENT-DRAGGING AND ITS IMPLEMENTATION [J].
CHAZELLE, B .
ALGORITHMICA, 1988, 3 (02) :205-221
[6]  
Chazelle B., 1982, 23rd Annual Symposium on Foundations of Computer Science, P339, DOI 10.1109/SFCS.1982.58
[7]  
Cole R., 1984, 25th Annual Symposium on Foundations of Computer Science (Cat. No. 84CH2085-9), P65, DOI 10.1109/SFCS.1984.715902
[8]  
DUNCAN CA, 2001, 9 S GRAPH DRAW GD 01, P162
[9]  
EDELSBRUNNER H, 1981, B EATCS, V15, P34
[10]  
EFRAT A, 2002, 18 ANN S COMP GEOM, P277