Algebraic reconstruction technique combined with Monte Carlo method for weight matrix calculation in gamma ray transmission tomography

被引:6
作者
Agarwal, Chhavi [1 ]
Mhatre, Amol [1 ]
Patra, Sabyasachi [1 ]
Chaudhury, Sanhita [1 ]
Goswami, A. [1 ]
机构
[1] Bhabha Atom Res Ctr, Radiochem Div, Mumbai 400085, Maharashtra, India
来源
SN APPLIED SCIENCES | 2019年 / 1卷 / 10期
关键词
Nondestructive assay; Transmission tomography; Image reconstruction; ART algorithm; Monte Carlo method; COMPUTED-TOMOGRAPHY; IMAGE-RECONSTRUCTION; EMISSION TOMOGRAPHY; WASTE-DRUM; ASSAY; SIMULATIONS; SYSTEM; GATE; CT;
D O I
10.1007/s42452-019-1201-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present work, the algebraic reconstruction technique (ART) combined with Monte Carlo method has been proposed for image reconstruction in gamma ray transmission tomography, which is generally used for the nondestructive assay of special nuclear materials. The Monte Carlo method has been explored to generate the weight matrix, which is required for executing ART algorithm. The method has been successfully demonstrated using a two-dimensional tomographic set-up with circular sample. The advantage of the method is that it is generalized, with no assumptions regarding weight matrices and is easily extendable to three dimensional systems, where other classical approaches become cumbersome. Moreover, the method is computationally simple and less time consuming unlike full scale Monte Carlo simulations.
引用
收藏
页数:9
相关论文
共 45 条
[1]   Gamma radiography and tomography with a CCD camera and Co-60 source [J].
Adams, Robert ;
Zboray, Robert .
APPLIED RADIATION AND ISOTOPES, 2017, 127 :82-86
[2]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[3]  
Arce P., 2008, NUCL SCI S C RECORD, P3162, DOI DOI 10.1109/NSSMIC.2008.4775023
[4]   Industrial gamma computed tomography using high aspect ratio scintillator detectors (A Geant4 simulation) [J].
Askari, Mojtaba ;
Taheri, Ali ;
Iarijani, Majid Mojtahedzadeh ;
Movafeghi, Amir .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 923 :109-117
[5]   An improved method for the non-destructive characterization of radioactive waste by gamma scanning [J].
Bai, Y. F. ;
Mauerhofer, E. ;
Wang, D. Z. ;
Odoj, R. .
APPLIED RADIATION AND ISOTOPES, 2009, 67 (10) :1897-1903
[6]   Compact high-resolution gamma-ray computed tomography system for multiphase flow studies [J].
Bieberle, A. ;
Nehring, H. ;
Berger, R. ;
Arlit, M. ;
Haerting, H-U. ;
Schubert, M. ;
Hampel, U. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (03)
[7]   Validation of high-resolution gamma-ray computed tomography for quantitative gas holdup measurements in centrifugal pumps [J].
Bieberle, Andre ;
Schaefer, Thomas ;
Neumann, Martin ;
Hampel, Uwe .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2015, 26 (09)
[8]  
Bjork C.W., 1987, P 3 INT C FAC OP SAF
[9]   Measurement of liquid flow distribution in trickle bed reactor of large diameter with a new gamma-ray tomographic system [J].
Boyer, C ;
Fanget, B .
CHEMICAL ENGINEERING SCIENCE, 2002, 57 (07) :1079-1089
[10]  
Briesmeister JF, 1986, LOS ALOMOS NATL LAB