Minimal control power of controlled dense coding and genuine tripartite entanglement

被引:7
作者
Oh, Changhun [1 ]
Kim, Hoyong [1 ]
Jeong, Kabgyun [1 ,2 ]
Jeong, Hyunseok [1 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Ctr Macroscop Quantum Control, Seoul 08826, South Korea
[2] Korea Inst Adv Study, Sch Computat Sci, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
QUANTUM; STATE; CLASSIFICATION; TELEPORTATION; COMMUNICATION;
D O I
10.1038/s41598-017-03822-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate minimal control power (MCP) for controlled dense coding defined by the channel capacity. We obtain MCPs for extended three-qubit Greenberger-Horne-Zeilinger (GHZ) states and generalized three-qubit W states. Among those GHZ states, the standard GHZ state is found to maximize the MCP and so does the standard W state among the W-type states. We find the lower and upper bounds of the MCP and show for pure states that the lower bound, zero, is achieved if and only if the three-qubit state is biseparable or fully separable. The upper bound is achieved only for the standard GHZ state. Since the MCP is nonzero only when three-qubit entanglement exists, this quantity may be a good candidate to measure the degree of genuine tripartite entanglement.
引用
收藏
页数:8
相关论文
共 35 条
[1]   Generalized Schmidt decomposition and classification of three-quantum-bit states [J].
Acín, A ;
Andrianov, A ;
Costa, L ;
Jané, E ;
Latorre, JI ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1560-1563
[2]   Classification of mixed three-qubit states -: art. no. 040401 [J].
Acín, A ;
Bruss, D ;
Lewenstein, M ;
Sanpera, A .
PHYSICAL REVIEW LETTERS, 2001, 87 (04) :40401-1
[3]   DENSE CODING BASED ON QUANTUM ENTANGLEMENT [J].
BARENCO, A ;
EKERT, AK .
JOURNAL OF MODERN OPTICS, 1995, 42 (06) :1253-1259
[4]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[5]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[6]   Mixed state dense coding and its relation to entanglement measures [J].
Bose, S ;
Plenio, MB ;
Vedral, V .
JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) :291-310
[7]   Classical information capacity of superdense coding [J].
Bowen, G .
PHYSICAL REVIEW A, 2001, 63 (02) :022302-022301
[8]   Dense coding for continuous variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW A, 2000, 61 (04) :4
[9]   Distributed quantum dense coding [J].
Bruss, D ;
D'Ariano, GM ;
Lewenstein, M ;
Macchiavello, C ;
Sen, A ;
Sen, U .
PHYSICAL REVIEW LETTERS, 2004, 93 (21)
[10]   Local symmetry properties of pure three-qubit states [J].
Carteret, HA ;
Sudbery, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (28) :4981-5002