Multiple Target Tracking Based on Multiple Hypotheses Tracking and Modified Ensemble Kalman Filter in Multi-Sensor Fusion

被引:18
作者
Zhang, Zequn [1 ,2 ]
Fu, Kun [1 ,2 ]
Sun, Xian [1 ,2 ]
Ren, Wenjuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Elect, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-sensor fusion; multiple target tracking; ensemble Kalman filter; multiple hypotheses tracking; DATA ASSOCIATION; ALGORITHM;
D O I
10.3390/s19143118
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In multi-sensor fusion (MSF), the integration of multi-sensor observation data with different observation errors to achieve more accurate positioning of the target has always been a research focus. In this study, a modified ensemble Kalman filter (EnKF) is presented to substitute the traditional Kalman filter (KF) in the multiple hypotheses tracking (MHT) to deal with the high nonlinearity that always shows up in multiple target tracking (MTT) problems. In addition, the multi-source observation data fusion is also realized by using the modified EnKF, which enables the low-precision observation data to be corrected by high-precision observation data, and the accuracy of the corrected data can be calibrated by the statistical information provided by the EnKF. Numerical studies are given to demonstrate the effectiveness of our proposed method and the results show that the MHT-EnKF method can achieve remarkable enhancement in dealing with nonlinear movement variation and positioning accuracy for MTT problems in MSF scenario.
引用
收藏
页数:16
相关论文
共 25 条
[1]   Multiple hypothesis tracking for multiple target tracking [J].
Blackman, SS .
IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2004, 19 (01) :5-18
[2]   Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position [J].
Bolognani, S ;
Oboe, R ;
Zigliotto, M .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1999, 46 (01) :184-191
[3]   The Improved Ensemble Kalman Filter for Multisensor Target Tracking [J].
Cui, Bo ;
Zhang, Jiashu .
ISISE 2008: INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING, VOL 1, 2008, :263-265
[4]  
Evensen G., 2003, Ocean Dynam., V53, P343, DOI [10.1007/s10236-003-0036-9, DOI 10.1007/S10236-003-0036-9]
[5]   SONAR TRACKING OF MULTIPLE TARGETS USING JOINT PROBABILISTIC DATA ASSOCIATION [J].
FORTMANN, TE ;
BARSHALOM, Y ;
SCHEFFE, M .
IEEE JOURNAL OF OCEANIC ENGINEERING, 1983, 8 (03) :173-184
[6]   Flexible Fusion Structure-Based Performance Optimization Learning for Multisensor Target Tracking [J].
Ge, Quanbo ;
Wei, Zhongliang ;
Cheng, Tianfa ;
Chen, Shaodong ;
Wang, Xiangfeng .
SENSORS, 2017, 17 (05)
[7]   Multi-Hypotheses Tracking using the Dempster-Shafer Theory, application to ambiguous road context [J].
Gruyer, Dominique ;
Demmel, Sebastien ;
Magnier, Valentin ;
Belaroussi, Rachid .
INFORMATION FUSION, 2016, 29 :40-56
[8]   Track-Oriented Multiple Hypothesis Tracking Based on Tabu Search and Gibbs Sampling [J].
He, Shaoming ;
Shin, Hyo-Sang ;
Tsourdos, Antonios .
IEEE SENSORS JOURNAL, 2018, 18 (01) :328-339
[9]  
Kosuge Y., 2015, ELEC COMMUN JPN, V82, P84, DOI [10.1002/(SICI)1520-6424(199912)82:12, DOI 10.1002/(SICI)1520-6424(199912)82:12]
[10]  
PORNSARAYOUTH S, 2011, IFAC P VOLUMES, V44, P12003, DOI [10.3182/20110828-6-it-1002.03399, DOI 10.3182/20110828-6-IT-1002.03399]