Continuous observability for the anisotropic Maxwell system

被引:13
作者
Eller, Matthias M. [1 ]
机构
[1] Georgetown Univ, Dept Math, Washington, DC 20057 USA
关键词
Maxwell's system; anisotropic media; boundary control;
D O I
10.1007/s00245-006-0886-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A boundary observability inequality for the homogeneous Maxwell system with variable, anisotropic coefficients is proved. The result implies uniqueness for an ill-posed Cauchy problem for Maxwell's system. Both results are so far known only in the special case of isotropic coefficients, i.e., when Maxwell's system reduces to a vector wave equation. Here the analysis has been carried out for the first-order system directly without references to the wave equation.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 22 条
[1]  
AUTRAY R, 1990, MATH ANAL NUMERICAL, V3
[2]  
BELISHEV M, 2002, ESAIM CONTR OPTIM CA, V5, P207
[3]  
CESSANAT M, 1996, MATH METHODS ELECTRO
[4]   Unique continuation for solutions to Maxwell's system with non-analytic anisotropic coefficients [J].
Eller, MM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 284 (02) :698-710
[5]   Exact boundary controllability of electromagnetic fields in a general region [J].
Eller, MM ;
Masters, JE .
APPLIED MATHEMATICS AND OPTIMIZATION, 2002, 45 (01) :99-123
[6]  
Gilbarg D., 1998, Elliptic Partial Differential Equations of Second Order, V2nd ed.
[7]   CARACTERISATION DE QUELQUES ESPACES DINTERPOLATION [J].
GRISVARD, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 25 (01) :40-&
[8]  
Hormander L., 1983, The Analysis of Linear Partial Differential Operators I
[9]   STABILIZATION AND EXACT BOUNDARY CONTROLLABILITY FOR MAXWELL EQUATIONS [J].
KAPITONOV, BV .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (02) :408-420
[10]  
Kline M., 1965, Electromagnetic Theory and Geometric Optics