Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling ? Benefits of exploring landslide data collection effects
Data-driven landslide susceptibility models formally integrate spatial landslide information with explanatory environmental variables that describe predisposing factors of slope instability. Well-performing models are commonly utilized to identify landslide-prone terrain or to understand the causes of slope instability. In most cases, however, the available landslide data is affected by spatial biases (e.g. underrepresentation of landslides far from infrastructure or in forests) and does therefore not perfectly represent the spatial distribution of past slope instabilities. Literature shows that implications of such data flaws are frequently ignored. This study was built upon landslide information that systematically relates to damage-causing and infrastructure-threatening events in South Tyrol, Italy (7400 km2). The created models represent three conceptually different strategies to deal with biased landslide information. The aims were to demonstrate why an inference of geomorphic causation from apparently well-performing models is invalid under common landslide data bias conditions (Model 1), to test a novel bias-adjustment approach (Model 2) and to exploit the underlying data bias to model areas likely affected by potentially damaging landslides (Model 3; intervention index), instead of landslide susceptibility. The study offers a novel perspective on how biases in landslide data can be considered within data-driven models by focusing not only on the process under investigation (landsliding), but also on the circumstances that led to the registration of landslide information (data collection effects). The results were evaluated in terms of statistical relationships, variable importance, predictive performance, and geomorphic plausibility. The results revealed that none of the models reflected landslide susceptibility. Despite partly high predictive per-formances, the models were unable to create geomorphically plausible spatial predictions. The impact-oriented intervention index, however, enabled to identify damage-causing landslides with high accuracy. We conclude that the frequent practice of inferring geomorphic causation from well-performing models without accounting for data limitations is invalid. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
机构:
Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, POB 217, NL-7500 AE Enschede, NetherlandsUniv Twente, Fac Geoinformat Sci & Earth Observat ITC, POB 217, NL-7500 AE Enschede, Netherlands
Lombardo, Luigi
Tanyas, Hakan
论文数: 0引用数: 0
h-index: 0
机构:
NASA, Hydrol Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD USA
Univ Space Res Assoc, Columbia, MD USAUniv Twente, Fac Geoinformat Sci & Earth Observat ITC, POB 217, NL-7500 AE Enschede, Netherlands
Tanyas, Hakan
Huser, Raphael
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn CEMSE Div, Thuwal 239556900, Saudi ArabiaUniv Twente, Fac Geoinformat Sci & Earth Observat ITC, POB 217, NL-7500 AE Enschede, Netherlands
Huser, Raphael
Guzzetti, Fausto
论文数: 0引用数: 0
h-index: 0
机构:
CNR, Ist Ric Protez Idrogeol IRPI, Via Madonna Alta 126, I-06128 Perugia, Italy
Consiglio Minist, Dipartimento Protez Civile, Via Vitorchiano 2, I-00189 Rome, ItalyUniv Twente, Fac Geoinformat Sci & Earth Observat ITC, POB 217, NL-7500 AE Enschede, Netherlands
Guzzetti, Fausto
Castro-Camilo, Daniela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Glasgow, Sch Math & Stat, Glasgow G12 8QQ, Lanark, ScotlandUniv Twente, Fac Geoinformat Sci & Earth Observat ITC, POB 217, NL-7500 AE Enschede, Netherlands
机构:
Chinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100029, Peoples R China
Chinese Acad Sci, Inst Earth Sci, Beijing 100029, Peoples R China
Univ Chinese Acad Sci, Beijing 100046, Peoples R ChinaChinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100029, Peoples R China
Liu, Linan
Li, Shouding
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100029, Peoples R China
Chinese Acad Sci, Inst Earth Sci, Beijing 100029, Peoples R China
Univ Chinese Acad Sci, Beijing 100046, Peoples R ChinaChinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100029, Peoples R China
Li, Shouding
Li, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100029, Peoples R China
Chinese Acad Sci, Inst Earth Sci, Beijing 100029, Peoples R China
Univ Chinese Acad Sci, Beijing 100046, Peoples R ChinaChinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100029, Peoples R China
Li, Xiao
Jiang, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Inst Geol Environm Monitoring, Urumqi 830002, Peoples R ChinaChinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100029, Peoples R China
Jiang, Yue
Wei, Wenhui
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Inst Geol Environm Monitoring, Urumqi 830002, Peoples R ChinaChinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100029, Peoples R China
Wei, Wenhui
Wang, Zhanhe
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Inst Geol Environm Monitoring, Urumqi 830002, Peoples R ChinaChinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100029, Peoples R China
Wang, Zhanhe
Bai, Yaheng
论文数: 0引用数: 0
h-index: 0
机构:
Henan Prov Commun Planning & Design Inst Co Ltd, Zhengzhou 450052, Henan, Peoples R ChinaChinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100029, Peoples R China
机构:
Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Peoples R China
Xiao, Te
Zhang, Li -Min
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Peoples R China
HKUST Shenzhen Hong Kong Collaborat Innovat Res In, Shenzhen, Futian, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Peoples R China
机构:
Natl Res Council Italy CNR IFAC, Nello Carrara Appl Phys Inst, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, ItalyNatl Res Council Italy CNR IFAC, Nello Carrara Appl Phys Inst, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
Amato, Gabriele
Palombi, Lorenzo
论文数: 0引用数: 0
h-index: 0
机构:
Natl Res Council Italy CNR IFAC, Nello Carrara Appl Phys Inst, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, ItalyNatl Res Council Italy CNR IFAC, Nello Carrara Appl Phys Inst, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
Palombi, Lorenzo
Raimondi, Valentina
论文数: 0引用数: 0
h-index: 0
机构:
Natl Res Council Italy CNR IFAC, Nello Carrara Appl Phys Inst, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, ItalyNatl Res Council Italy CNR IFAC, Nello Carrara Appl Phys Inst, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
机构:
Nanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
State Key Lab Cultivat Base Geog Environm Evolut, Nanjing 210023, Jiangsu, Peoples R China
Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China
Univ Wisconsin, Dept Geog, Madison, WI 53706 USANanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
Zhu, A-Xing
Miao, Yamin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
State Key Lab Cultivat Base Geog Environm Evolut, Nanjing 210023, Jiangsu, Peoples R China
Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
Miao, Yamin
Wang, Rongxun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Dept Geog, Duluth, MN 55812 USANanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
Wang, Rongxun
Zhu, Tongxin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Dept Geog, Duluth, MN 55812 USANanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
Zhu, Tongxin
Deng, Yongcui
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
Deng, Yongcui
Liu, Junzhi
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
State Key Lab Cultivat Base Geog Environm Evolut, Nanjing 210023, Jiangsu, Peoples R China
Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
Liu, Junzhi
Yang, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R ChinaNanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
Yang, Lin
Qin, Cheng-Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R ChinaNanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
Qin, Cheng-Zhi
Hong, Haoyuan
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China
State Key Lab Cultivat Base Geog Environm Evolut, Nanjing 210023, Jiangsu, Peoples R China
Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Key Lab Virtual Geog Environm, Nanjing 210023, Jiangsu, Peoples R China