Atomistic simulation of the mechanical properties of nanoporous gold

被引:49
作者
Rodriguez-Nieva, J. F. [1 ]
Ruestes, C. J. [2 ,3 ]
Tang, Y. [4 ]
Bringa, E. M. [2 ,3 ]
机构
[1] Univ Nacl Cuyo, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Univ Nacl Cuyo, Fac Ciencias Exactas & Nat, RA-5500 Mendoza, Argentina
[3] Consejo Nacl Invest Cient & Tecn, RA-5500 Mendoza, Argentina
[4] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
关键词
Molecular dynamics (MD); Plastic deformation; Nanoporous; Nanovoid collapse; Dislocation dynamics; MOLECULAR-DYNAMICS SIMULATIONS; EMBEDDED-ATOM-METHOD; NANOCRYSTALLINE MATERIALS; ULTRAHIGH STRENGTH; SHOCK COMPRESSION; DEFECT STRUCTURE; VOID GROWTH; METALS; COPPER; MODEL;
D O I
10.1016/j.actamat.2014.07.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the mechanical behavior of nanoporous gold under uniaxial compression and strain rates in the range of 10(7)-10(9) s(-1) using molecular dynamics simulations. We consider the low-porosity regime (porosity of similar to 5%), which is characterized by several stages of plastic deformation. At the onset of plasticity, pores act as if isolated by emitting "shear" dislocation loops. At higher deformations, the mechanical response is determined by the interactions between dislocations in the dense dislocation forest, leading to strain hardening. Increasing the strain rate results in an increasing flow stress ranging from 0.4 to 0.7 GPa within the range of applied strain rates. The von Mises stress sigma(VM) in the hardening regime features two possible power-law dependencies as a function of dislocation density rho(d): in the initial stages of plastic deformation we obtained sigma(VM) proportional to rho(2)(d), but changes to Taylor hardening crvm sigma(VM) proportional to rho(1/2)(d) at higher dislocation densities. The velocity of dislocations is estimated to be similar to 60% of the speed of sound in the early stages of plastic deformation, but later decreases dramatically due to dislocation-dislocation and dislocation-pore interactions. The unloading of the complex dislocation and stacking fault network leads to the production of vacancies. As a result, we propose that the vacancy clusters observed experimentally in recovered samples and attributed to "dislocation-free" plasticity are instead due to the aggregation of those vacancies left behind during recovery. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 65 条
[1]   Investigating Damage Evolution at the Nanoscale: Molecular Dynamics Simulations of Nanovoid Growth in Single-Crystal Aluminum [J].
Bhatia, M. A. ;
Solanki, K. N. ;
Moitra, A. ;
Tschopp, M. A. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (02) :617-626
[2]   Microscopic failure behavior of nanoporous gold [J].
Biener, J ;
Hodge, AM ;
Hamza, AV .
APPLIED PHYSICS LETTERS, 2005, 87 (12) :1-3
[3]   Nanoporous Au: A high yield strength material [J].
Biener, J ;
Hodge, AM ;
Hamza, AV ;
Hsiung, LM ;
Satcher, JH .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (02)
[4]   Size effects on the mechanical behavior of nanoporous Au [J].
Biener, Juergen ;
Hodge, Andrea M. ;
Hayes, Joel R. ;
Volkert, Cynthia A. ;
Zepeda-Ruiz, Luis A. ;
Hamza, Alex V. ;
Abraham, Farid F. .
NANO LETTERS, 2006, 6 (10) :2379-2382
[5]   Atomistic study of drag, surface and inertial effects on edge dislocations in face-centered cubic metals [J].
Bitzek, E ;
Gumbsch, P .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 :11-15
[6]   Dynamic aspects of dislocation motion: atomistic simulations [J].
Bitzek, E ;
Gumbsch, P .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 400 :40-44
[7]   Are Nanoporous Materials Radiation Resistant? [J].
Bringa, E. M. ;
Monk, J. D. ;
Caro, A. ;
Misra, A. ;
Zepeda-Ruiz, L. ;
Duchaineau, M. ;
Abraham, F. ;
Nastasi, M. ;
Picraux, S. T. ;
Wang, Y. Q. ;
Farkas, D. .
NANO LETTERS, 2012, 12 (07) :3351-3355
[8]   Response to "Shear Impossibility-Comments on 'Void Growth by Dislocation Emission' and 'Void Growth in Metals" [J].
Bringa, E. M. ;
Lubarda, V. A. ;
Meyers, M. A. .
SCRIPTA MATERIALIA, 2010, 63 (01) :148-150
[9]   Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects [J].
Bringa, Eduardo M. ;
Traiviratana, Sirirat ;
Meyers, Marc A. .
ACTA MATERIALIA, 2010, 58 (13) :4458-4477
[10]   Ultrahigh strength in nanocrystalline materials under shock loading [J].
Bringa, EM ;
Caro, A ;
Wang, YM ;
Victoria, M ;
McNaney, JM ;
Remington, BA ;
Smith, RF ;
Torralva, BR ;
Van Swygenhoven, H .
SCIENCE, 2005, 309 (5742) :1838-1841